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Abstract 

In ftiis Phase I STTR effort, Frontier Technology Inc. (FTI), and University of Florida 
(UF) are teamed to develop and analyze designs for automatically generated adaptive statistical 
pattern recognition (GASP) systems to detect targets against time-varying natural and manmade 
backgrounds. This research has been performed in the context of FTFs DoD-supported "TNE" 
("Tabular Nearest-neighbor Encoder") paradigm for classify-before-detect (CBD) pattern 
recognition and ATR. UF's powerful data fusion paradigm, Morphological Neural Nets (MNNs) 
has also been analyzed for this application. MNN's and TNE have been proven highly successful 
in a wide variety of recognition problems. Following preliminary design, FTI and UF analyzed 
GASP system performance to demonstrate increased probability of detection (Pd) with respect to 
MNNs or more traditional Bayesian systems alone. Design for real-tune or near-real time 
implementations of GASP included analysis of state-of-the-art embedded processing 
technologies such as field programmable gate arrays (FPGAs) and smgle-mstruction multiple- 
data (SIMD) array processors. 

FTFs TNE paradigm is built around a very low complexity, vector search/comparison 
algorithm based completely on Boolean operations among binary-component, data-related 
vectors stored in a large table. FTI has successfully applied flie process to several previous 
applications with considerable success. Here, it forms the architectural basis for oxxr approach to 
the derivation of time-evolving inferences through the fusion of multiple sensor/ classifier 
responses and the comparison of these to a vectorized knowledge base or training set. 
Apphcation of the TNE process on any (and all) signature vectors results in clusters of non- 
isolated 'lagreement events" with regard to the components of every vector in the training set, at 
the cost of only a relatively small number of binary "and" and "or" processor operations within 
the large table. We generate a bmary (Boolean) element matrix 'Agreement Map (AM)" for 
each test vector (e.g., image patch), and then consider all these related AMs in the inference 
process. We can even significantly suppress random noise "agreements" by selecting only those 
agreement events that occur along with another contiguous (e.g. adjacent pixels) and/or 
contemporaneous (e.g., a single pixel in subsequent samples or frames) event of the same t5^e. 
This is also readily doable via a relatively small number of Boolean operations. Finally, we 
consider associations among traming set exemplars. As a result of variation in object orientation, 
size, articulation, configuration, etc.; a target is best represented in the training set by a (possibly 
large) collection of exemplars. We can gain a measure of "mference strength" from a cluster of 
agreement events within one of these target-related exemplar clusters by applymg the Boolean 
"or" operation on the respective AMs. Thus, our TNE paradigm facilitates the generation of 
target-related inferences based on the fusion of (perhaps) many diverse observations as compared 
to collections of candidate exemplars. The final resuUs of the process are clusters of agreement 
events indexed by traimng set exemplar group number, vector component (e.g., pixel), and 
coUectbn time (or spectrum, or however the data vectors themselves are mdexed). As a part of 
this Phase I contract, we have implemented and partially optimized the above process. 

We also considered statistical clustering and MNN approaches to further mterpiet the 
composite "trainmg set agreement event space" (i.e., a "stack" or related AMs) in order to 
generate inferences with respect to the viewing objects. A comment: we believe that our 
approach, a sfrongly "classify-before-detect" one, is architecturally similar to the human visual 
recognition system. 
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1.0 Introduction 

Frontier Technology, Inc. and University of Florida (UF) are pleased to submit this Final 
Report pursuant to Amy STTR 02-T004, Analysis and Characterization of Pattern Classifiers. 

Military and domestic targets in digital imagery can be detected by a variety of 
techniques, including hyperspectral imaging, change detection, and a combination of broadband 
signature and spatial pattern recognition algorithms. Hyperspectral imaging acquires dense 
signature information across numerous spectral bands, which can be processed with techniques 
such as component selection to maxunize target-background separation. By locating areas where 
target camouflage statistics (e.g., hue, patterning, and changes or motion) do not match 
background statistics, candidate targets can be identified. It is well known that further 
decomposition of spatial and spectral attributes of candidate targets using adaptive filtering or 
classification techniques can yield estimates of target presence at a given location. 

Image-based automated target recognition systems are typically limited by natural effects 
such as statistical, spectral, and geometric similarity of targets or target-specific features viewed 
against a variety of naturally-occurring backgrounds. In dynamic ATR imagery, the movement 
of targets among cover objects (e.g., overhanging foliage, rocks, etc.) can obscure targets 
sufficiently to confound tracking algorithms. A special type of image processing operation or 
ATR filter, called an anomaly detector, is able to highlight regions of an image or video 
sequence that's statistical, spectral, or geometric properties (including spatial fi-equency) do not 
match those of its proximal background. ATR systems, which usually comprise a suite of ATR 
filters and one or more anomaly detectors, can be used to detect candidate target regions by 
mathematically combining (fiising) the filter outputs, which can then be processed by one or 
more pattern classifiers to yield an estimation or prediction of target location or identity. This 
ATR strategy is called detect-before-classify (DBC). 

Unfortunately, DBC ATR systems have several significant deficits. Firstly, accurate 
target classification is predicated on the target havmg been successfully detected and accurately 
represented by a candidate target blob. Secondly, the ATR filters are assumed to be selected via 
a priori knowledge of salient target characteristics. Thirdly, one assumes that the classifiers will 
generate outputs that are not mutually contradictory in the context of ground truth. For example, 
if classifier Ci claims a tank is detected, but C2 or C3 respectively report that a jeep or bus is 
detected, then the classifier output will be a less reliable estimate of actual target identity. 
Fourthly, if the ATR filter input (e.g., multispectral imagery) has statistical, spectral, or other 
attributes that vary spatiotemporally in the secular sense (e.g., beyond mere intra- or inter-frame 
variations), then the classifier output reliability will drift as a fimction of time. This typically 
renders the ATR system output nonstationary if the system design is based on nonadaptive ATR 
filter and classifier algorithms. 

Another limitation of detect-before-classify ATR systems is sensitivity of tte detection stage 
to noise, spatial distortion, and spectral shifts in the sensor response fiinction. These are but a 
few deficits of realistic sensmg systems tiiat can derive (for exanple) fi-om poor hardware 
design; detector or amplifier malfiinction in the presence of environmental ha2ards; sensor 
platform roll, pitch, or yaw; and optical component response perturbations given nechanical, 
thermal, or hydration sti-ess. Numerous other problems are possible, and have been discussed 
elsewhere [Sch96]. In summary, if the detection stage is sensitive to noise, other systematic 
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error, or mission-specific perturbations, then the information contained in the candidate target 
blobs is likely to be a less accurate descriptor of target content. As a result, probability of 
detection (Pd) can decrease and rate of false alarms (Rfa) can increase, at significant liability to 
missions depending on such systems. 

In this Phase-I STTR, we address two solutions to the aforementioned problems. Firstly, we 
have developed a an approach to making classifier output more reliable when (a) individual 
classifier design is based on concepts of Bayesian statistics (where significant a priori 
information is required); and (b) the characteristic response of multiple classifiers employed in 
an ATR system is known. This has traditionally been achieved by applying evidential reasoning 
to multiple classifier outputs, as illustrated notionally in Figure 1.1. We studied three 
competitive technologies for classifier output disambiguation: Denqjster-Schaefer theory, fuzzy 
logic, and an innovative paradigm called Morphological Neural Nets (MNNs). The best- 
performance technology would be selected for system design and prototype implementation. 

Secondly, per the Phase-II goal of generating automated statistical pattern recognition 
systems (GASP) we note that there exists a much more effective technique for ATR, called 
classify-before-detect (CBD) which efficiently combines detection and classification in a 
concurrent operator (similar to the human vision system). CBD systems tend to be more noise 
toleirant, and can adapt to nonstationary input using a priori or a posteriori knowledge including 
a history of filter performance under various input conditions. It is important to note that FTI 
and UF have developed both DBC and CBD systems for a wide variety of ATR applications for 
numerous DoD-fiinded projects, and thus have significant research and development expertise in 
this area. It is also important to observe that, throughout this report, we refer to Phase-II 
developments and results in order to tie our Phase-I results into the broader GASP system 
concept. 

Sensor 1 ATRFilter(s) Classifier 

Sensor 2 ATRFilter(s) ♦  Classifier 

Sensor N ATRFilter(s) Classifier 

Classifier 
Refinement 

Process 

Refined Estimate 
of Target Position 

and Identity 

Figure 1.1: Schematic diagram of multi-sensor processing and classification architecture, in 
support of target detection 

In contrast to model-based, noise- limited approaches developed by previous DBC 
research efforts (whether or not statistical pattern recognition was enployed), we have developed 
a broad-based system design for GASP that would initially configure an exemplar pattern 
database using a morphological NN. The resultant codebook of statistical target tenplates would 
be based on significant prior knowledge of target attributes, both before and after the ATR 
filtering process. Given this pattern database, FTI's TNE pattern recognition algorithm can be 
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used to classify input data (e.g., multispectral imagery) immediately following the sensor output, 
thus implementing classify-before detect. 

Our research team is highly qualified to address all aspects of this research and 
development project. The Principal Investigator, Mr. Gary Key, has over 30 years experience in 
data/signal exploitation and sensor/processor characterization. He has led numerous research 
efforts in these areas. Mr. is the inventor/discoverer of the TNE Paradigm described in this Fmal 
Report. The Principal UF Lead, Dr. Mark Schmalz, directed system design and evaluation at 
UF, and was responsible for all aspects of the research effort. Dr. Schmalz has over 15 years 
experience in the design and implementation of large-scale software systems for physical and 
optical modeUng, as well as target recognition and image enhancement. Dr. Schmalz' research 
in target recognition and mine detection has recently been funded by the Air Force (AFOSR) airi 
Navy (ONR), and emphasizes detection of natural or manmade targets (e.g., landmines or 
vehicles) obscured by overlying cover, refractive or scattering media (e.g., submerged targets or 
sea mines), or atmospheric obscurants. The UF Co-Lead, Dr. Gerhard X Ritter, assisted in 
theory development and algorithm design. Dr. Ritter is Professor of Computer and Information 
Science and Engineering, Professor of Mathematics, and Director of the Center for Computer 
Vision and Visualization at University of Florida. Dr. Ritter has over 15 years experience in 
DoD-funded development of theory, algorithms, and software for computer vision appUcations, 
including human/vehicle detection, tracking, classification, and recognition. 

The GASP project has yielded significant technological advances that can be apphed to areas 
such as military and domestic object detection applications, for example, battlefield detection of 
concealed defense assets, and (using technology developed in this and other research efforts) 
monitoring of battle areas for groups or structured arrays of concealed vehicles or hazards. 
Adaptations of the proposed algorithms and software could be employed in domestic 
applications such as law enforcement (e.g., contraband detection), as well as environmental or 
wildlife management studies where passive surveillance or monitoring of animal or plant 
subjects is required. 

1.3. Project Scope and History 
This research project involved efforts in: (a) analysis of multi-classifier pattern recognition 

systems for ATR, (b) adapting TNE and MNN algorithms for detecting targets embedded m 
naturally-occurring backgrounds; (c) comparative analysis of Bayesian rule-based classifiers, 
MNNs, and TNE alone for combining the results of multiple classifiers to support ATR with 
increased Pd and reduced Rfa; (d) performance analysis of classifiers in c), above, that could be 
implemented in Phase-I; (e) design or evaluation of advanced classifier processing architecture 
concepts using MNNs to process the TNE "Agreement Map"; and (f) development of 
demonstration capabilities and a Phase-II proposal in support of follow-on research. 

1.4. Schedule of Work (SOW), with Conformance Data 
The Schedule of Work (SOW) for the effort is listed below, with conformance or exceptions 

as indicated. 

Task 1. Survey Evidential Reasoning techniques and data for GASP 
Conformance:   This task was completed as proposed, on schedule, as described in the foUowmg 

subtasks. 
STl.l.   Specify requirements for target classifier iiput/output. 
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Conformance:   Requirements for each post-sensor classifier input were specified as a vector of 
Boolean or grayscale values that represented sensor output, for example, 
spectral coefficients pertaining to target or background regions.  Requirements 
for the post-sensor classifier output emphasized a classification score within the 
real-valued interval [0,1], or a Boolean score (e.g., target or no-target). These 
scores would then be input to the classifier refinement algorithm, which would 
produce a list of probable target identities, or an estimate of the probability of 
target presence given a hypothetical target identity. 

ST1.2.   Survey literature of evidential reasoning for newest developments. 
Conformance:   The available literature at the time of contract award was surveyed, and we did 

not find any significant new research developments since the date the Phase-1 
proposal was submitted. 

ST1.3      Select best-performance technologies on the basis of accuracy, adaptability, and 
efficiency 

Conformance:   We surveyed textbook algorithms for Bayesian inference and found these to be 
representative of rule-based classification algorithms.   Morphological Neural 
Networks are superior to other neural network algorithms for the type of 
classification envisioned for a GASP system.  FTI's TNE algorithm has been 
demonstrated to exhibit superior performance for template matching tasks, 
versus other types of template matching algorithms studied in previous research. 

Task 2. Design and analysis of algorithms, software, and test imagery to support Classifier 
Output Fusion and Refinement for GASP 

Conformance:   This task was completed without Subtask 2.3 being performed for TNE 
(although error analysis was provided for Bayesian and MNN based classifiers). 

ST2.1. Extend classifier performance analysis to include metrics for moving and stationary 
targets in video and still imagery. 

Conformance:   This subtask was completed by extending the Fd and Ffa pixel firaction metrics 
that UF developed in previous research to portray multiframe targets.   These 
metrics are discussed in the Advanced Technology Summary (Section 7). 

ST2.2.   Specify enhancements to existing FTI and UF TNE and MNN algorithm descriptions 
and software for pattern classifier refinement discussed in this proposal. Incorporate 
UF's Morphological Neural Networks into the TNE Paradigm to (a) select the TNE 
codebook per mission-specific requirements and a history of classifier performance, 
and (b) select pattern clusters for TNE agreement map processing to maximize Pd and 
mmimizeRfa. 

Conformance:   This UF subtask was redirected at the request of Frontier Technology's POC 
Mr. Key to emphasize MNN-based processing of the TNE agreement map, with 
research results summarized in Section 6. 

ST2.3. Prototype the  design of the  classifier refinement system,  and conduct noise, 
sensitivity, and complexity analysis to support use of GASP m the presence of sensor 
noise, systematic error, and nonergodic input. 

Conformance:   This subtask was completed for Bayesian classifiers (Section 4) and MNNs 
(Section 5).  The MNN-specific theory allows one to construct kernel vectors 
that are robust in the presence of erosive or dilative noise.   Since MNNs are 
robust classifiers in the presence of other types of noise, this extends the utility 
and accuracy of MNNs to provide not only classification, but classifier 
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refinement in the presence of noise or systematic effects such as thresholding 
error in the TNE agreement map. 

Task 3. End-to-end system design and Classifier Refinement Testing [E.3.2] 
Conformance:   This UF task was partially completed, but within the constraints of the Phase-1 

proposed effort, which did not include consideration of the effect of MNNs on 
the TNE template database.  With the agreement of FTI's POC Mr. Key, we 
also allocated a portion of the effort for this task to the theoretical development 
of MNN-enhanced TNE agreement map processing. 

ST3.1. Design GASP system, design test procedures, and simulate performance using models 
and algorithms developed in Tasks 1 and 2. 

Conformance:   Performance   and   complexity   of  MNN-enhanced   TNE   agreement   map 
processing were analyzed theoretically, which was simplified by the fact that 
MNNs converge in one pass of the network, rather than oscillating or 
reverberating  as   do  classical  NNs.     Additionally,  we  re-examined  the 
complexity of TNE. 

ST3.2. Analyze sensitivity of system to dynamic targets and target-backgroimd motion 
Include effects of nonergodic mput on classifier refinement algorithm learning rate, as 
well as performance measures such as Pd and Rfa. 

Conformance:   This subtask was completed for TNE, primarily at FTI, with technical assistance 
provided by UF.   UF is continuing this work in the context of another DoD- 
funded project on which UF has a subcontract with FTI as prime contractor. 
Further discussion of these issues can be found in the Advanced Technology 
Summary (Appendix B). 

Task 4. Management, Reporting, and Marketing Plan 
Manage overall effort, developing technical reports, final report and internal and 
external review meetings. 

Conformance:   FTI (with the assistance of UF) has submitted monthly technical reports, and 
has written this final report. We are also collaborating with UF in writing the 
Phase-II proposal, at the request of the sponsor. 

2.0 GASP System CoiKept 
In this section, we review the concept development that was designed to support our Phase-1 

research for Army STTR 02-T004, Analysis and Characterization of Pattem Classifiers. Section 
2.1 contains a discussion of project objectives and system fimctionality. Section 2.2 overviews 
the technique of decomposition that supported GASP related research in multi-paradigm pattem 
recognition approaches, and Section 2.3 summarizes unplementational issues, with concentration 
on challenges that are germane to the proposed Phase-II research and development effort. 

2.1. Project Objectives and Achievements 
Consider a multi-classifier system as shown, for example, in Figure 1.1. Here, a sensor 

suite comprised of N sensors (e.g., radar, electro-optic, inertial or GPS) forms a projection of the 
three-dimensional scene within the footprint of the sensors. This projection can contain 
intensity, spatial, range or spectral information, whose content and format is idiosyncratic to each 
sensor or sensor type, as well as to each target or background object. In order to process each 
sensor's output in a way that is accurate in and relevant to application-specific objectives, each 

10 
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of the N sensor outputs is typically input to a postprocessing computation that is often followed 
by a classifier. Alternatively, several postprocessed outputs can be combined prior to 
classification. The result is that M < N classifier outputs are available, each of which can 
represent different estimates of target presence, for example, target identity, probability of 
detection or false alarm rate. In an ideal classification scenario, classifier output would also be 
associated with different data quality measures and degrees of confidence or caution. 

The combination of these disparate classifier outputs is fi-aught with difficulty, primarily due 
to different parameters (e.g., a spectral detection process versus a time-of-flight based detection) 
and data quality (e.g., high computational error corrupting one classifier output, while another 
classifier is sensitive to image detector noise propagated through one of the aforementioned 
postprocessing computations). Various techniques such as linear or nonlinear combmation, 
Bayesian or unsupervised classification, and supervised learning techniques such as neural 
networks have been proposed for refimng the output of individual classifiers or combining such 
outputs to produce a more accurate classification. 

The Topic Description for this STTR effort specified classifier refinement, particularly 
comparison with Bayesian approaches, as the preferred emphasis. Accordingly, we have 
considered Bayesian rule-based networks (Section 3), Frontier Technology's TNE pattern 
recognition paradigm (Section 4), and UF's Morphological Neural Networks (MNNs) pattern 
recognition paradigm (Section 5) for both classifier and post-classifier processing. Furthermore, 
we have investigated and formulated approaches for processmg the TNE agreement map usmg 
MNNs (Section 6). The latter techniques represent important new developments m pattern 
recognition, which promise greater accuracy and information storage capacity, as well as 
improved refinement of classified sensor output. 

2.2. System Decomposition 
Consider again the multi-classifier system, in Figure 1.1. Here N sensors produce N output 

datastreams that are processed by ATR filters to extract salient features. The features are then 
classified, to yield preliminary estimates of target location or identity. In many realistic cases, 
the individual classifiers can produce conflicting results, due to input noise, sensor error or noise, 
partial information, or lack of coverage of the traming set. Thus, a classifier refinement process 
is applied to the individual classifier outputs to produce a refined estimate of target location and 
an estimate of target identity, insofar as theory, algorithms, and training data permit. The salient 
parts of this system are thus 

• Sensor and Sampling Process(es), which can include source of noise and error, for 
example, due to image compression and decompression, undersampling, or quantization; 

• Feature Extraction Process(es) that might or might not extract features accurately, or m a 
manner that provides optimally useful mformation to the foUow^on classifier(s); 

• Feature Classification, which can be erroneous due to incomplete coverage, lack of 
contextual information, sensitivity to error m the feature extraction process, etc.; 

• Classifier Output Refinement, which is expected to compensate for the aforementioned 
noise and error effects, to provide a more accurate estimate of target location and identity. 

In Phase-I research; we neglected the sensor and sampling effects, for two reasons. First, it was 
expected that the pattem recognition paradigm(s) developed under the scope of this study would 
be independent of sensor, sampling, and feature extraction effects. Second, time and resources 
did not permit end-to-end sensor modeling, which was not specified in the SOW. As a result, we 
concentrated on pattem recognition only, in the context of classifier refinement. 

11 
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2.3. Implementational Issues 
When considering the system diagram shown in Figure 1.1 in relationship to the three pattern 

recognition paradigms studied in this project, it is reasonable to determine how each paradigm 
can be decomposed m relationship to Figure 1.1 and the system decomposition discussed in 
Section 2.2. We have found that Bayesian rule-based classification covers the classifier and 
classifier output refinement blocks of Figure 1.1, while FTI's TNE paradigm covers all post- 
sensor processing, including sampling of the sensor data. In particular, TNE has as its prior 
information (in the Bayesian sense) the target template database, distance measures used to 
compute the matching score between a given sensor output sample and a target template, and the 
thresholding function and parameters employed in transforming the match score into a binary 
number that becomes a value in TNE's Agreement Map. 

Morphological Neural Networks simplify the processing cascade shown in Figure 1.1 by 
directly operating on the sensor output, although MNNs can also be applied to feature detector 
output. Classifier refmement is not required when MNNs solely are employed. When MNNs 
are combined with TNE, then the MNN is used to process the Boolean data in the TNE 
Agreement Map. If the columns of the AM are viewed as preliminary classifier results for a 
given sample, then an MNN applied to the AM can produce a refined, target-specific estimate of 
presence; location data is provided by the TNE sample coordinates. 

Computational complexity is an issue for all three paradigms studied. Bayesian rule-based 
pattern recognition requkes a minimum of O(log N) time for runtime. Build-time (rule 
assembly) work varies with the complexity of the feature vector and training set size. TNE 
requires considerable build-time overhead to construct the binary pomter table fi-om which the 
agreement map is derived. However, the run-time classification is I/0-intensive primarily, as 
discussed in Section 4. For example, given an N-point sample and a template database 
comprised of M targets, 0(MNAV) I/O operations are required to build each AM on computers 
with maximum W-bit integer arithmetic (usually W=32 or W=64), while each target vector can 
be post-processed in the classifier refmement step m 0(NAV) time. Since TNEis a massively 
parallel pattern recognition paradigm, these complexities can be straightforwardly reduced 
through the use of multiple parallel buses and processmg elements, as discussed in p:ey99]. 
MNNs are the most efficient of the three paradigms studied herein: build-time activity pertains 
dkectly to computation of the MNN weight matrix, which requires very small training tunes. 
Runtime classification is accomplished in one pass of the net: for an N-input net, this amounts to 
0(N) computation on an N-processor machine. 

As shown in previous research [Key99, Rit98], both TNE and MNNs are tolerant of input 
noise and missmg information. This claim cannot be made globally for Bayesian classifiers, 
where one must know all a priori probabilities, and be able to completely and accurately' 
calculate the a posteriori probabihties for the entire expected target set. Additionally, MNNs can 
perform a limited amount of interpolation to support classification with partial information, 
while neither TNE nor Bayesian rule-based classifiers are capable of interpolation. 

As a result of our Phase-I research; we envision the foUowmg unplementational challenges in 
a Phase-II research effort: 

•    Quantifying tte performance of TNE, MNNs, and the TNE/MNN combination in the 
presence of mput noise, error, and partial mformation; 
Quantifying the performance limits on MNN-du-ected processing of the TNE agreement 
map, to determme limits of utility on TNE/MNN versus MNN or TNE alone; 
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• Effectiveness with which MNNs can be used to cluster target exemplars in TNE's 
template database, to achieve more efficient pattern recognition without degrading Pd or 
Rfa performance; and 

• Hardware design and implementation for TNE/MNN ^plications, to achieve optimal or 
near-optimal space/time/error tradeoffs for various embedded processing scenarios. 

We next provide a theoretical overview of Bayesian classifiers, with emphasis on classifier 
error and performance metrics. 

2.4. References 
[Key99] Key, G., M.S. Schmalz. F.M; Caimi, and G.X. Ritter. "Performance analysis of 

tabular nearest neighbor encoding algorithm for joint compression and ATR", in 
Proceedings SPIE 3814:115-126 (1999). 

[Rit98] Ritter, G.X., P. Sussner, and J.L. Diaz de Leon. "Morphological associative 
memories", IEEE Transactions on Neural Networks 9(2):281-293 (1998). 

3. Bayesian Rule-Based Pattern Recognition Paradigm 
Bayesian decision theory is a statistical pattern classification approach that is based on two 

strong assumptions: (1) a given decision or classification problem can be posed in probabilistic 
terms, and (2) all of the relevant prdbabiHties are known.  Without initially considering either 
epistemological basis  or realism of these assumptions,  we first present a mathematical 
description of Bayesian classifier theory (Section 3.1). We then discuss techniques and metrics 
by which the performance (e.g., classification accuracy) of pattern classifiers in general, and 
Bayesian classifiers in particular, can be quantified (Section 3.2).   Section 3.3 contains an 
overview of Bayesian classifier refinement techniques. Finally, in Section 3.4, we note the 
shortcomings of the Bayesian paradigm relative to statistical techniques such as FTFs TNE 
paradigm or neural networks. 
3.1. Mathematical Description of Bayesian Pattern Recognition 

Let us begin by considering a simple problem of classifying candidate targets in digital 
monochromatic imagery. In particular, assume that a given target area in an image (also called 
dixvAOI) can be classified according to its brightness or grayscale value g, as target (^ = g) or 
non-target (g = g). We generalize this assumption by saying that there is an a priori probability 
Pr(gi) that the current AOI is a target and some a priori probability Pr(e) = 1 - Pr(gi) that it is 
not a target. If the decision process is automated, then the simplest approach is to decide that a 
given AOI is a target if Pr(@) > Pr(g2); and conversely a non-target object. In general, the 
probability of error is the smaller of Pr(gi) and Pr(g). 

In practice, we view grayscale intensity g as a continuous random variable whose distribution 
depends upon multiple constraints (e.g., target size, shape, and surface texture or color; lighting 
angle(s) and color(s); environmental variables such as atmospheric temperature, humidity, or 
windspeed in the case of infi-ared imagery; camera lens, detector, and amplifier spatial and 
intensity response, etc.) "Ltipig \ ^) AQnoiQiht state-conditional probability density function for 
g, given that the state of the target recognition environment is g, where I = 1 or I = 2 is possible 
in our highly simplified example. Then, the difference in brightness between target and non- 
target objects is described by 

Ag=J9(g| gO-pfele). 
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Now let us make this problem more realistic by assuming that we know Pr(a) and Pr(g) as 
well as p(g I gi) and p(g | gz). Additionally, suppose we can measure g for a given AOL Bayes' 
Rule shows that observing the value of g changes the a priori probability Pr(g) to the a posteriori 
probability Pr(g | g), as follows: 

Prfalg)-^'"'^'', (3.1) 

where the composite probability (also called mixture density) p(x) is given by 

P{x)=^p{g\gi)-Vt{g;). (3.2) 
i=l 

If we have a value g for which Pr(@ | g) > Pr(g21 g), then it is reasonable to decide that a target is 
present; conversely, a non-target object is recognized. 

Now let us consider the probability of error m this simple example. Whenever we measure a 
particular grayscale value g, the probability of an error e is given by 

/ .   \_JPr(gi|g)   if AOIis classified as torge^ 

lPr(g2 1^)   if AOI is classified as «o«-torgef" 
As before, we can minimize the probability of error by deciding target when Pr(a | g) > Pr(g21 
g), and non-target conversely. This estimation is correct because the average probability of error 
is given by 

Pr(e) = j"^ Vx{Q,x)dx = j"^ Pr(e | x)p{x) dx. (3.4) 

If, for every value ofg, Pr(e | g) is minimized, then the preceding integral is minimized. 
There are well-known arguments that the scale factor p(x) is inherently unimportant because 

it merely ensures that the a posteriori probabilities sum to imity. Elimination of p(x) yields the 
following Bayesian decision rule: 

Classify AOI as target ifp(g | gi)Pr(gi) >p(g \ gj)Pr(g2), otherwise classify as non-target. 
Let us now consider these concepts in light of the two-class Bayesian decision problem inherent 
in target versus non-target discrimination. 

3.1.1. Two-Class Problem. Let x = (xi, 3^, ..., jfc) denote a pattem vector comprised of n 
features, which is to be classified in class ci or C2. Denoting the a posteriori probability of ci 
given X, we have previously observed that, in the simplest classifier based upon probabilities 
only, X is in class ci if Pr(ci | x) > Pr(c2 | x) or, conversely, in C2. In Equation (3.1), we showed 
that the a posteriori probability Pr(ci | x) can be calculated from the a priori probability Pr(ci), for 
i = 1 or i = 2, using the Bayes rule: 

Pr(ci I x) = Pr(ci)/?(ci | x) /p(x), 
where p(x) denotes the mixture density function referred to as a scale factor in the preceding 
discussion.   Since p(x) is positive and common to both sides of the inequality inherent in 
Bayesian decision, we can write the decision rule as 

Pr(ci)p(ci IX) % Pi(c2)p(c2 IX). (3.5) 
^2 

This can also be expressed in terms of a likelihood ratio L(x), defined as 
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;7(c2|x)cl Pr(q) ' 
(3.6) 

where Pr(c2)/Pr(ci) is called the threshold value of the likelihood ratio for the decision. Writing 
this in logarithmic form, we have the minus log likelihood ratio 

h(x) = -log{L{x)) = -log{p{ci \x)) + log{p{c2i |x)) > logfl^ 
C2      lPr(c2) 

log(Pr(ci))-log(Pr(c2)) 

which is also called the discriminant function. The comments pertaining to decision error, which 
surround Equations (3.3) and (3.4), also apply to this discussion. 

3.1.2. Implementational Issues.  It is possible to compute h given specific assumptions about 
prior and posterior probabilities.    For example, when the values p(ci \ x) are normal with 
expected vectors Mi and covariance matrices Vi, then the decision rule becomes 
Mx) = -log(Z,(x)) 

^Pr(ci)V3.7) _ 1 l{x-MiyVi-\x-Mi)-^{x-M2yV2\x-M2)+^log 
/iFjI^^i 

^log 
C2 tPrh), 

Equation (3.7) illustrates that the decision boundary is expressed quadratically in x.  However, 
when V\ = V2= V, the boundary is a linear function of x, expressed as 

h{x) = [M2-Mifv~^x+\\Mjv~^Mi-M2V~^M2)  i log 
-^ ^ C2 

Pr(q) 

Pr(c2)J 
(3.8) 

where V denotes the system covariance matrix. 
The consideration of covariance matrices leads to a special case where M{ = 0 and 

n = 
1 

Pi 

.Pi •••    Pi 

-n-1 
Pi 

Pi 
1 

which can be seen where stationary random processes are sampled temporally to form random 

vectors. Note that V~  and \V^ are expressed for this form of Vi as 

"1    -Pi     0      •••     0 ■ 

-Pi    1+pf    -Pi       ■•• '•■ 
0      ■•.     ■•.     ••.      0 

: ■•.      -Pi   1+pf    -Pi 

0        •••        0      -Pi       1 
This allows us to express the quadratic form of Equation (3.7) as 

1 i     ^2 
I-Pf 

and      |Fi| = (l-pf)""\ 
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1 + Pl     I + P2 

1-p?    I-P2 

n    2 

i=l 

Pi P1 
1-p? 1-P2 

(xN4) 

2pi        2p2 

1-P?    I-P2 
IXjXi+i+(«-l)l0g 
i=l 

1-pl 

I-P2 C2 

(3.9) 

tPr(c2) 

where the second term portrays the boundary effect of finite-length observation of random 
processes, which diminishes with increasing n. Ignoring the second and fourth terms, and setting 
log(Pr(ci)) / log(Pr(c2)) = 0 [e.g., Pr(ci) = Pr(c2)], one can express the decision rule as 

(XxjXj+i )/ZXj < T, where T denotes a threshold. 

In other words, classification occurs by thresholding an estimate of the correlation coefficient. 
This is reasonable, since Vj ^ V2 is (in this case) the only difference between a and C2. 

Another interesting well-known case  occurs  when the pattern vectors  are mutually 
independent and exponentially distributed, which impUes that 

n    1     —^(''j) 
P(ci\^)=U — e    'J        , (3.10) 

j=iaij 
where ^j denotes the exponential distribution parameter for 5 and q, with s denoting the step 
function. As a result, h(x) in Section 3.1.1 can be rewritten as 

h{x)= 1 
j=l 

1 1 

^2} 

X j + i log 
^2j 

(3.11) 

In this case, the Bayes decision rule becomes a linear function of the terms 35. 

3.2. Overview of Classifier Performance Analysis 
In order to determme whether or not a classifier is performing correctly, we need to take into 

account the concepts of cost and risk. For example, in ATR practice, one might prefer to weight 
different target or non-target objects according to their importance. For example, the cost 
associated with a classification as tank is likely to be of different kind and degree than the object 
type schoolbus. In the two-class problem described herein, the misclassification of a non-target 
object (e.g., a schoolbus) as a target (e.g., a tank) is Ukely to be significantly more damaging than 
the converse. Accordinagly, we present the following brief discussion of cost weighting in 
Bayesian decision paradigms. 

If Cij denotes the cost of deciding that a feature vector derived fi-om an observation (e.g., an 
AOI in an unage) is a member of class q (written as xe q) when xecj is the correct 

classification, then the conditional cost of deciding x e q, which we denote as ri(x), is given by 

r,(x) = Qi-Pr(ci|x)-hQ2-Pr(c2|x). (3.12) 
The decision rule and its resulting conditional cost r(x) given x are expressed as 
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'•lW^^2W      and      r(x) = min(ri(x),r2(x)). (3.13) 

The total cost r of this decision is given by the expected value of r(x): 

r = ^(|r(x)|) = Jmin (ri(x), rj (x)) ■ p(x) dx 

= J^^(QlPr(q)Mq|x)+Ci2Pr(c2Hc2|x))ix + J^ (C2iPr(ci)/7(q|x)+C22Pr(c2)p(c2|x)) 

where Li andZ2 are determined by the decision rule in Equation (3.13). 
The decision boundary that minimizes r in the preceding equation can be calculated as follows. 
First, we rewrite the preceding equation as a function of Z,i, by replacing 

j^ p{ci\^)dx 

with 

which can be done since Li and L2 are disjoint but cover the entire domain. We thus obtain 

r = (C21 Pr(ci)+C22 Pr(c2)) + J^^ [(C„ - C21 )Pr(ci Mq I x) + (C12 - C22 )Pr(c2 )p(c2 I x)] Jx 

(3.14) 
By appropriate choice of Z,i (where possible), r can be minunized. If, for a given x, the integrand 
of Equation (3.14) is negative, then r can be decreased by assigning x to Ii. If the mtegrand is 
positive, it is possible to decrease r by assigning x to Z,2. Thus, the minimum-cost decision rule 
assigns to L\ the values of x for which the integrand of Equation (3.14) is negative. This can be 
sxmmiarized m the following inequality: 

(Ci2 - C22 )Pr(c2 )p[c2 I x) > (C21 - C„ )Pr(ci )p{c^ \ x) (3.15) 

which can be expressed ratiometrically as 

p{ci\y)%{Cn-C22)Hc2) ,,,,, 
p(c2|x)c<(C2i-C„)Pr(c,)  ■ ^^-^^^ 

This is typically called the Bayes test for minimum cost. By comparing Equation (3.16) with 
Equation (3.6), it can be readily seen that this test is a Hkelihood ratio test with a threshold that is 
different from the one used in Equation (3.6). In particular, the selection of cost functions is 
equivalent to changing the a priori probabilities Pr(ci). It is interesting to note that Equation 
(3.16) is identical to Equation (3.6) when C21 - di = C12 - C22, which is called a symmetrical 
cost function. Here, the cost becomes the probability of error, and the test inherent in Equation 
(3.16) minunizes this probability of error. In a two-class problem, when a wrong decision for 
one class is more critical than for the other class, an asymmetrical cost function must be 
employed. 
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3.3. Refinement of Bayesian Classifier Output 
Machine learning (ML) las become an important part of research in artificial intelligence, 

image and signal processing, and database research. In statistical pattern recognition, one applies 
probability theory and decision theory to a statistical model of the input to obtain a classification 
algorithm. This is opposed to using training data to select among different algorithms, or to 
enploying common-sense heuristics to design an algorithm. In classification, one assigns a class 
identifier to a measurement, or equivalently, identifies the probabilistic source of a measurement. 
Here, one needs only the conditional model of the class variable given the measurement, which 
can be obtained fi-om a conditional model or learned directly. The former approach is 
generative, since it models the measurements in each class, but requires more work, can exploit 
more a priori knowledge, needs less data, is more modular, and can handle missing or corrupted 
data. Applicable techniques include mixture models and hidden Markov models. The latter 
approach (direct learning) is discriminative since it focuses only on distinguishing between 
classes. This can be more efficient in runtime mode (i.e., pattern classification subsequent to 
training) and requires fewer modeling assumptions. Typical techniques include logistic 
regression, generalized linear classifiers, and nearest-neighbor classification. Based on our 
research, we prefer direct learning due to the previously-listed advantages, as well as its 
flexibility and reduced reUance on a priori models (which are often brittle in ATR practice). 

In Bayesian model selection, one chooses the model that assigns the highest probability to 
the data after all parameters have been removed (e.g., via integration). In contrast, maximum 
likelihood estimates parameter values that maximize the classifier's likelihood fimction. This 
ignores the prior distribution and thus is inconsistent with Bayesian theory, but works well ia 
practice. Alternatively, maximum a posteriori (MAP) heviristics seek parameter values that 
maximize a parameter's posterior density. This implies the Bayesian assumption of a prior 
distribution over the parameter. Although MAP estimation has generally high accuracy, it tends 
to predict future data less accurately than ihaximum likelihood techniques. A better Bayesian 
method for parameter estimation is predictive estimation. Also, MAP is sensitive to 
reparameterization, which is central to adaptivity in the proposed GASP scheme of ML. 

An important implementational technique in ML is the induction of decision trees, which 
tend to be more comprehensible to humans than other learning models such as neural networks 
[Gro99]. Decision trees efficiently solve the ATR classification problem (i.e., predicting a class 
identity based on target/feature attributes), since classification requires only a linear walk down 
the tree. Bagging and Boosting [Die98] are efficient techniques for improvmg classification 
accuracy of a single decision tree, by generating multiple learning methods, then voting on their 
output. 

Grossman and Williams [Gro99] unproved the Bagging algorithm introduced by Breiman 
[Bre94], based on the ID3 decision tree algorithm with chi-squared pre-pruning. Learning 
methods are weighted, where weights are based on the classification accuracy of each learner on 
sanples not selected during the bootstrapping process, which generates random training sets for 
each learner fi-om the training data. In contrast, Hashem [Has94,Tum96] uses least-squares 
regression to discover weights that naximize classification accuracy. Additionally, Murkhya 
and Weiss tested alternate decision trees based on pruning by statistical significance levels, on a 
siibset of the training data to find the best-performance tree [Ind98]. They also employed a 
voting mechanism based on this tree. 
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The work of the preceding authors was based on the assumption that testing on a verification 
set estimates the future performance of a decision tree. Grossman and Williams generate a 
sufficient number of multiple trees by choosing bootstrap sets fi-om the original training data. 
They use a dynamic weighting function for estimating the goodness of each tree in the ensemble, 
but do not discard trees in the ensemble that perform below the goodness threshold prior to 
voting. 

Although theory for a posteriori refinement of decision tree based classification has advanced 
considerably [ScF97,Fri98], there appears to be no easy method for increasing the adaptability of 
such classifiers or follow-on multi-classifier output disambiguation procedures. For example, 
classification with Dempster-Schaefer theory has been based on assumptions of stationary 
Markov models [Cla91]. However, practical target recognition problems mvolve nonstationary 
input, to which successful, robust classifiers must adapt. As mentioned in previous sections, a 
key disadvantage of Bayesian q)proaches is the requirement of significant a priori knowledge, a 
statistical model of the input that must incorporate key features that are themselves mput to the 
pattern classifier(s), and decision structures that must be adapted in a supervised method - a 
globally optimal construction method is presently imclear. Additionally, tiie noise tolerance of 
Bayesian classifiers has only been recently reported for experimental ATR scenarios [GreOO], 
and Bayesian classifiers do not necessarily adapt well to nonergodic inputs - for example, the 
vast majority of Kports in the literature describe designs based on ergodic Markov processes 
[Wan00,Got98,Bor96]. 

Traditionally, the adaptability of pattern recognizers is conceptualized as having two 
modalities, which we have previously called build-time and runtime. During build time, the 
classifier can be adapted offline (i.e., trained) on a static dataset. Input changes can be tracked 
by maintaining a history of input statistics. During runtime, the classifiers and their associated 
output disambiguation or postprocessing routine(s) are applied to input data in the usual maimer. 
To remedy well-known problems of lack of adaptivity associated with traditional rule-based 
classifiers, we have employed a novel multi-classifier approach. In particular, we have assisted 
FTI in employing a morphological NN to process the TNE agreement map columns, which 
correspond to preliminary classifier output, as discussed in Section 2. It has been shown that 
MNNs perform superiorly to classical NNs [Rit97,98]. MNN technology is further discussed in 
Section 5. 

In a possible Phase 2 effort, we propose to assist FTI in further extending the basic concept 
of Grossman and Williams' technique to include adaptive classifier refinement techniques based 

on UF's MNNs and FTI's TNE paradigm. As in the current study, the fusion and 
disambiguation of multiple classifier outputs can be modulated by classifier performance data 

determined by standard ATR performance analysis metrics (e.g., Pd and Rfa). This closed-loop 
modulation of the classifier refinement process supports adaptation to performance challenges 

such as input nonergodicities via a backpropagation algorithm that closely resembles established 
learning procedures that have been successfully applied to classical NNs. Observe that accurate, 
nontrivial tree- or rule-based classifiers that continuously adapt to fluctuations in input statistics 
have yet to be reported in the literature. Similar in overview to the implementation of traditional 
classifiers, MNN, and TNE-based classifiers are illustrated notionally in Figure 3.1. However, 

the combination of adaptability and accuracy inherent in the joint MNN/TNE classifier 
represents a significant development in pattern recognition technology. The concept of using 
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MNNs to drive adaptation of TNB-based pattern recognition represents an important advance 
over traditional open-loop ATR systems. 

A second use of MNNs would be in supporting target cluster analysis and optimization in the 
template database. In practice, targets tend to exhibit similarity at slightly different poses, due to 

tangent projection geometry. That is, a tank rotated out-of-plane by five degrees will appear 
visually similar to the same tank rotated out-of-plane by 10 degrees. A preliminary estimate of 

target similarity can be arrived at by application of a Euchdean distance function to the M target 
exemplars, each of which has K pixels, thereby incurring work of O(KM^) multiplications and 

0(M^) square roots. Alternatively, an MNN could be configured to examine the target 
exemplars, taking into account factors such as backgrovmd mean, spatial and grayscale variance, 

or feature orientation. Each of these measures could be determined by an MNN, and could 
provide useful information about target similarity beyond the distance functions typically (but 

not necessarily) employed by TNE. 
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Figure 3.1. Experimental configuration for competitive performance 

analysis of classifier refinement algorithms. 

3.4. Utility of Bayesian Classification for ATR 
The preceding discussion highlights several features of Bayesian decision paradigms: 

1. 

2. 

Coverage must be complete - that is, all outcomes must be known. This means that Bayesian 
classifiers, as presented in the classical Bayesian theory of this section, cannot accurately 
interpolate or extrapolate over missing data. 
Probabilities must be computed accurately: if a given outcome is unknown or guessed at, 
then tiie a priori probability will be erroneous, which will influence the computation of a 
posteriori probabilities and, therefore, the associated likelihood ratio(s). This means that 
Bayesian cost minimization will, in the affected instances, be erroneous and thus, 
nonoptimal. In practice, therefore, the presence of erroneous probabilities mean that the cost 
function cannot be minimized. 
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3. A given classifier comprised of a fixed system of Bayesian rules cannot readily be re- 
parameterized to include additional classes, rules, or instances of input patterns. If such 
additional constraints are introduced, then the prior knowledge changes, which in each 
nontrivial case modifies the a posteriori probabilities. As in item 2, above, this affects the 
likelihood ratios and cost function minimization. 

The preceding features represent significant limitations of classical Bayesian pattern classifiers. 
Reasoning imder uncertainty and incomplete data are, however, supported by FTFs TNE 

paradigm, which is discussed in Section 4. Further support for such realistic constraints is 
provided by neural network-based pattern classifiers, in particular, UF's Morphological Neural 
Networks, which is discussed in Section 5. In particular, neural nets have well-known 
capabilities of accurate pattern classification given partial or noise-corrupted inputs, and are 
extensible in the sense that they can learn new patterns and classification rules. Thus, we next 
discuss these paradigms, then overview their joint application to ATR in Section 6. A summary 
of advantages and disadvantages of each approach is given in Section 7. 
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4.0 TNE Pattern Recognition Paradigm 

Tabular Nearest Neighbor Encoding (TNE) is an advanced pattern recognition paradigm that 
employs mapping operators to construct an intermediate data array called the agreement map 
(AM) from prior knowledge applied to input data. The AM is then processed (for example, via 
thresholding) to yield a Boolean data structure that can be subjected to bitwise or, and, as well as 
xor operations, followed by row or column summation to yield classification scores. Because 
TNE is based on an efficient projection technique that performs preliminary detection of 
candidate pattem features in hyperspace, and because this projection is implemented in terms of 
I/O operations only, TNE is significantly more efficient than template matching techniques based 
on arithmetic operations. Section 4.1 presents basic theory of TNE, while Section 4.2 compares 
TNE with previous and related research. Section 4.3 contains several applicative examples and 
complexity analysis. Section 4.4 presents a heuristic overview of the paradigm applied to multi- 
source data fiision. 

4.1. Mathematical Description of TNE 
We begin with an overview of TNE concepts, then progress to the TNE algorithm. Let an N- 

pixel input (e.g., a 4N X-JN -pixel source image a e Z^) be mathematically subdivided into K- 

pixel sampling blocks, of which there are N/K such blocks or test vectors. Each vector be Z^ 
has K vector components. Sampling blocks can be rectangular or noncontiguous, and the vector 
components can be groups of pixels, streaming audio or video subsamples, etc. 

Further assume that there exists a database c of M reference patterns, each having K pixels 

and being configured in the same manner as b. Thus,   c(0 eZ^,l<i<M . For example, if b 

is comprised of square blocks of -/^xVx^ pixels, then each exemplar b(0 in c has 
^K x-^K pixels. 

In traditional pattem recognition applications, a technique called exhaustive template 
matching compares each K-pixel source block b with each K-pixel exemplar in c, requuing work 
of at least NMK pixels per source image, if all sampling block phase shifts are accounted for. If 
one appHes such operations to large images with many reference patterns (e.g., N = 10^, M = 10^, 
K = 10^), then prohibitive work (e.g., NMK = 10^^ comparison operations) is incurred. 

In contrast, TNE precomputes a projection D that stores all possible outcomes resulting from 
application of the M-exemplar pattem database to each possible source block configuration. For 
example, if the source value set is 2^, then there are nf possible configurations of each source 
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block. Because TNE uses I/O operations only to implement p, in a processor having fast I/O, 
this approach is significantly more efficient than using comparison operations. We next present 
theory that describes the TNE algorithm, in particular, tiie projection D that supports TNE's 
implementational efficiency. 
4.1.1. Assumptions. Let an image a e F^ be subdivided by an indexing function h to yield a 
collection of K-pixel sampling blocks A = {b(y): y e Y}, where ¥ c X. Let a codebook c be 
formed from A, such that c contains M K-pixel exemplars, each of which represent a cluster Q, 
where i = 1..Q. Let a feature space representation F have axes Bi, B2,..., Bj,..., Bp, to which are 
projected each of the clusters Q, thereby producing a collection of intervals denoted by 

/ = {Iij6R2:l<i<Mandl<j<P}. 

Boxes wiiich project onto level k 

D 's^ 
ri—, Training Set Boxes —]_}   I—I 

Xn 

k 

Possible levels, component Xn 

Level K boxes: 2, 5, 6, 9,14,... 

Level K Binary vector:      01001100100001... 

Figure 4.1: Derivation of binary pointer vectors for each quantization level along 
 each dimension of a highly-dimensional feature space.. 

This projection process is illustrated notionally in F^re 4.1, in which the implementational term 
binary pointer vector corresponds to a projection of multiple pattern clusters. 
4.1.2. Algorithm.   Let a sampling block b(y) be represented by a point or region p in a P- 
dunensional feature space F.  Let p be projected to axes % j = 1..P, to yield a collection of 
intervals denoted by 

J = {Jy6R2:l<i<Mandl<j<P}. 

Although Jj is one-dimensional when p is a point (the sunplest case), we employ the more 
involved assumption that Jij is two-dunensional, for purposes of generality. 

Step 1.      Let /and Jbe processed by an operation that compares the extent of Jij with the 
extent of Ij, such that a PxM-element bitmap d is formed, as follows: 

d(i, j) = j^   ^ ^^-^''J^ - ^^i'J^ ^^ ^^-^i'j) - ^2(Iij) 
[0   otherwise ' 

where/7k denotes projection to the 1^'' coordinate.  This process is also illustrated 
notionally m Figure 4.1. 

23 



STTR Army02-T004  Topic Title: Analysis and Characterization of Pattern Classifier^ 
GASP - Generator for Adaptive Statistical Pattern Recognition Systems     January 31, 2003 

Step 2. As an example of pattern recognition, sum d rowwise, and subtract P as to yield 
scores g(i) = P-Zdj, where di denotes the ith row of d. The resultant scores 
equal the limming distances between p and each exemplar c(i) represented by 
cluster Q. Associated AM generation and manipulation steps are shown 
notionally in Figure 4.2. 

Step 3. The best-match codebook ejKmplars are given by c(domain(min(g))); the choice 
function can be used to select one best-match exemplar randomly from these 
exemplars. An example matching result is shown schematically in Figiire 4.3. 

Signal Vector 

SENSOR 
1 

SENSOR 
2 

SENSOR 
3     " 

Binary Pointer Table, Dimension 1 

i()bioiiipioiioibioiii(Moii;. 
;OlqOiqlo1oOMi«l 1110O0O0O.,. 

Table, Dimension IM 

oldbioiwooooibii 1 iooooob. 
;6idiii(»i6loii)tid1oioioi)oo 
:oidoi 610100601011 iiooMbb,:. 

"agreement 
map" 

1006101 oio6oioipoioo1oi6l;:.. 

Figure 4.2. Specification of the virtual agreement map via pointers derived from 
sampled vector components. In this notional example, the AM implements the 

fusion of three distinct sensors or sensor data types. 

Sample 
values, 

1st profile' 

Sample 
values, 

2nd profile 

Binary 
"agreement'!. 

vector 

Template 
Vector 

"Agreement" 
range 

iiiUiliTTTTTTTT 
1101 1011 11 1011 11 

Figure 4.3: TNE pattern recognition process combines the source vector with the 
training set vector in the context of the agreement map. In particular, TNE derives a 
binary agreement vector wherein a 1 signifies that the associated components agree 
 within a prespecified tolerance, and a 0 indicates no match. 
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4.1.3. Complexity. Assuming that the codebook cluster projections are precomputed, as 
mentioned previously, the projection of p to the axes of F requires 0(P) arithmetic and 
transcendental operations per source block, for example, P sine operations and 2P additions. 
Comparison of / and J requires 2PM comparisons per source block, with P(M+1) additions 
required to produce g. Similarly, M comparisons are required to find the best-match exemplar in 
c. Hence, the work required by TNE codebook search over a is given by: 

WxNE = N(M(2P +1) comparison s + P(M + 3) additions + P transcende ntals) . 
4.1.4. Observation. In previous research [Key99], we have presented TNE as a means for 
implementing fast codebook search over imagery compressed by vector quantization (VQ). 
However, the TNE algorithm does not necessarily compress an image, but primarily provides an 
efficient means for codebook search. TNE can be configured to compress an image by indexing 
each sampling block according to the spatial configuration of its grayscale values. That is, a 
given pixel (x,a(x)) of a provides both spatial and grayscale information to a map 
D:XxR->G, where R denotes domain(a.) and G is an indexed set of pointers to Mbit 
Boolean vectors stored in database D. Each vector represents one of the K pixels of a given 
sampling block b. In the resulting MxK-pixel array d, which is called the agreement map, the j- 
th column represents a bit vector of binary matching scores between (1) value b(x) at position x 
of domain(b) indexed by j, and (2) all exemplar values c(i)(x), where i =1..M. The exemplar that 
best matches b is given by 

c(choice(domain(min(K - Sdi)))), 
where di denotes the i-th row of d. 
4.1.5. Remaric It is easily verified that precomputation of £> is the burdensome step m the TNE 
algorithm, which can be compared to the overhead of codebook construction. For example, if 
each sampling block has K pixels each having m greylevels, then nf block configurations are 
possible. Comparison of these configurations with the M codebook exemplars yields a total cost 
of W = O(KMnif^) comparison operations. Given small values of K = 64, M = 256, and m = 
256, it is easily verified that W is prohibitively large. Hence, it is reasonable to determine the 
subset S of the nf block configurations that occurs in a given traming set. Given S, W can be 
reduced to 0(KM* |S|) comparison operations. For example, if |S| = 10^ and the proportionality 
constant in the complexity estimate of W is set to unity for purposes of simplicity, then W = 
256^x10^ = 1.67 X lO' comparison operations. Derivation of the working set S is a topic of 
current research, which we plan to emphasize in a possible Phase-II effort. 

4.2. Previous Work 
4.2.1. Observation. As noted previously, a problem with VQ codebook search has been 
achieving log(M) time complexity. Efficient codebook search algorithms that have been 
pubUshed in the open literature include: 

1) n-ary tree search, where each exemplar is rendered in progressive n-fold resolution 
reduction, to facilitate multiresolution representation per source block [Xu98] 

2) Row and column decimation schemes, whereby a sampling block is characterized h 
terms of a signature derived fi-om each row or column, to facilitate comparison of fewer 
features [E1S99]; 

3) Statistical search techniques, whereby each codebook exemplar and source block are 
represented by parameters such as mean, standard deviation, skewness, or kurtosis 
[Pog93,Sch97]; 
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4) Subpattem characterization, in which each codebook and exemplar is subdivided into 
partitions, each of which correspond to a small pattern, thus producing a hierarchy of 
codebooks [Che99]; and 

5) Block transformations such as the discrete cosine transform employed in JPEG, to reduce 
each encoding block to a vector of coefficients that can be quantized and downselected 
[Mey98]. 

The common feature of each search method is the reduction of an exemplar or source block to an 
approximate representation, which can be thought of as a signature ox feature vector. 
4.2.2. Remark. Unfortunately, hierarchical, row/column, statistical, subpattem, and 
transformation based representational schemes are n-to-1 mappings and are thus lossy 
transforms. As a result, the representation of a given source block may not be sufficiently 
precise to avoid confusion between exemplars. Therefore, one usually implements a multi-level 
matching scheme to compensate for this deficiency. An illustrative example follows. 
4.2.3. Algorithm. In mxilti-level matching, given a source block b, one performs the following 
steps: 

Step 1. Reduce b to an approximate representation, such as a block mean or simplified 
zero-crossing pattern derived by thresholding b about its mean. 

Step 2. Compare the reduced block to a similar, reduced representation of each codebook 
exemplar. Alternatively, the block representation can be structured to point to a 
block indices in a list of Ne probable best-match exemplars. 

Step 3. If the htter alternative in Step 2 is employed, then each of the H exemplars 
would be compared to b, yielding a best match according to a prespecified 
matching criterion. 

4.2.4. Complexity. Reduction of the source block to a parametric representation typically 
requires fjK sampling operations, where the fraction £ denotes a subsampling ratio. For 
example, if f = 0.4, then two out of every five source pixels are sampled. Table 4.1 Usts the 
complexity of various reduction operations, includmg n-ary tree encoding. If a given 
representational system uses K{, parameters and a reduced source block representation, then 
comparison of Ne exemplars requires at least NpNe operations. The cost of different comparison 
methods is Usted in Table 4.2. Observe that threshold techniques listed in Table 4.2 generally 
compare a source block value v to determine if v is in a prespecified interval, which can be 
space-variant. The Sum Threshold (Product Threshold) comparison sums (resp. takes the 
product of) the Boolean values that represent the partial thresholded matches. 

Table 4.1. Work Wr incurred by a reduction operation applied to a K-pixel source block with 
sampling factor fi. 

Block Operation Additions Multiplications Comparisons Roots 

Mean |i; work = Wn [^8^1-1 1                                            0                         0 

Std. Deviation cr,W„ f2fsK]-l [^8^1 + 1                                    0                         1 

k* Central Moment mt [^fsK]-! [(k-l)fsK] + l                              0                         1 

n-ary Tree Encoding ^——■  X  0 0 
1=0 n      n i=on 

Table 4.2. Work Wm incurred by a matching operation applied to an Np-parameter source block 
representation. 
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Block Operation Additions 
Np-1 

Multiplications Comparisons 
0 

Roots 
Sum of Deviations 0 0 
Mean Deviation Np-1 1 0 0 
Sum-Squared Deviation Np-1 Np 0 0 
RMS Deviation 2Np-l Np 0 1 
Normalized Autocorrelation 0 2Np + l 0 0 
Normalized Cross-correlation 0 3Np + l 0 0 
Sum of Thresholds Np-1 0 2Np 0 
Product of Thresholds 0 Np 2Np 0 

The mean work required for block encoded compression via these types of reductionist 
codebook search techniques can thus be expressed in terms of blocksize K, mean number of 
exemplars Ne retrieved during primary search, and the work V^ (Wm) required by a block 
reduction (matching) operation, as follows: 

Wtot = Wr(6,K) + Ne'W„>(Np). 
Note that Wm is not weighted by f (although the work estimates in Table 4.1 could be so 
weighted), since computation over the reduced representation is already efficient. 
4.2.5. TNE-like Pattern Matching Paradigms. Ramasubramaniam and Paliwal [Ram99] 
recently published a search paradigm similar to TNE that is amenable to joint implementation 
with vector quantization. Two techniques are investigated (box-search and cell-partition 
search), which are based on Voronoi projections. The cell-partition method uses an intersection- 
count procedure for obtaining a set of candidate vectors, whereas the box-search algorithm uses a 
bounding-box interpretation of the projection information. Since it does not maintain an 
intersection count, box-search requires significantly less storage. Both techniques produce an 
optimum set of codevectors. The authors also investigated the effect of principal component 
rotation and fotmd that it reduces the complexity of codebook search based on Voronoi 
projection, while potentially reducing representational error in the reconstructed (decompressed) 
data. 
4.2.5.1. Box-search. Given codebook c, let the Voronoi region Vi associated with a K- 
dimensional codebook exemplar c; contain all points in the space R'^ that are nearer to Ci than to 
any other codevector. If a test vector xe Vi, then Cf is the nearest neighbor of x. The projection 
Pij of Vi onto the j-th coordinate axis of R*^ is an interval with upper(R) and lower (L) boiindaiy 
points 

Pi!j=xAi/'j«      and      Pj^j^^XiPjCx). 
where pj denotes projection to the j-th coordinate. The preceding bounds represent two 
hyperplanes normal to the j** coordinate axis. Taken together, the K projections Pg, j = 1..K, 
define a set ^ of 2K hyperplanes that bound V as 

Bi={x:pL<pj(x)<P.u,j = l..KJ. 

Since each codevector has such a hj^jercuboid approximation to \[, we observe that Vi cBi 
implies that a given test vector x may have several associated candidate codevectors in the set 
C(x) = {ci: X e Bi}. Thus, the central task of the box-search algorithm is to locate the nearest 
neighbor of x in C(x). 

This search can be rendered efficient by testing each of the K coordinates of x against the 
bounds of Vi that corresponds to Ci e C(x). If the j-th coordinate of x falls outside BO), then Ci is 
rejected as a candidate codevector. The complexity of this initial search step is thus 0(K' |C(x)|) 
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comparisons. The reduced set C obtained by initial search of C is then subjected to distance 
computation, thereby incurring 0(K) arithmetic operations. This is precisely the method 
employed in TNE based compression, which uses a Mahalanobis-like distance as the matching 
metric. 

4.2.5.2. Cell-partition search. In the preceding section, N overlapping intervals Pij generate 2N 
projection boundaries (55,1, 35,2, —, y,N) havmg a natural ordering yj,i < 5^,2 < ... < yj,N that 
partitions the j** coordinate axis into 2N-1 contiguous intervals I = {^(1), 1(2), ... , I(2N-1)}, 
where ^m) = (j5,m, >5,m+i). Each interval i(m) is associated with a set §(m) of indices for "M 
whose projection intervals Pij can overlap witii IJ(m). 

Further, the 2N-1 contiguous intervals on each of the K coordinate axes partitions R^ into 
(2N-1)*^ hyperrectangular cells. Given test vector x = (xi, xi, - , ?fe), if JCm,) contains 35, then 
S^Cn^) contains the candidate codevectors that could be nearest neighbors of x. The test vector is 
thus located by examming K intervals J(iq), j = 1..K, to yield the hyperrectangular cell 

H(x) = ni^(mj). 

Thus, the final set of candidate codevectors is given by 
K 

S(x)=nsJ(mj) . 
j=i 

This development suggests to techniques for finding the candidate codevectors C'(x). First, one 
can entabulate the (2N-1)*^ cells in a table, fi-om which C is obtained, here the best-match cell is 
identified using the preceding equation. Unfortunately, this requires prohibitive storage that 
increases exponentially as 0(N'^). The second technique precomputes the candidate sets S(m) 
and stores them in K mapping tables. Each table corresponds to one coordinate axis and has 2N- 
1 rows, one per interval Pg. This requires 0(K(2N-1)) storage. The fmal set of candidate 
codevectors is obtained by an intersection count procedure, which requires Klog(2N) + W 
operations, where K+N < W < (K+1)N. This is similar to the possible TNE matching procedure 
of summing columns of the agreement map to yield a basis for Hamming distance computation. 
Such simmiation can be applied to single columns or to columns grouped via rowwise operations 
such as Boolean or, and, or xor. 

4.2.5.3. Principal component rotation. Ramasubramanian and Paliwal state that the application 
of principal component rotation to the K-dimensional exemplar space referred to in Sections 
4.2.5.1 and 4.2.5.2 resuUs in a consistently lower complexity for box-search than the unrotated 
case. This occurs since the projections of the Voronoi regions obtained with the rotated 
coordinates significantly reduce the overlap between bounding boxes Q, thereby reducing the 
size of set C. In contrast, the storage and computational overheads of cell-partition search are 
significantly increased, since coordinate rotation increases the average index set size. An 
additional effect of rotation is increased signal-to-noise ratb (i.e., decreased reconstruction 
error). Again, this is due to reduced overlap between Voronoi regions. Also, the authors report 
that rotation groups the SNR closer to that obtained via full search for all codebook sizes. We 
plan to investigate application of this technique to TN&based compression in the near future. 
However, Ramasubramaniam and Paliwal's box-search algorithm does not of itself appear to 
have advantages over TNE, which generalizes the box-search technique. 
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8 by 8, Compression 
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More Partitions 
1^      as Needed 

Figure 4.4. Notional diagram of spatial partitioning strategy for TNEA'^Q image 
compression. 

4.3. Examples and Analysis 
A useful example application of TNE for purposes of initial illustration is image 

compression, with feature or object recognition over compressed imagery. In tiiis application, 
TNE can be thought of as involving three steps: (1) image database partitioning (2) codebook 
constmction, and (3) codebook search, which are described as follows. 

4.3.1. Partitioning. As described previously, each source frame or image can be partitioned into 
K-pixel encoding blocks. Each encoding block can be compressed in two ways. First, the 
number of source pixels Nsp can be reduced to Ncp, leading to a domain compression ratio CRD 
= NSP /Ncp. Second, the nximber of bits per source pixel NSB can be reduced to NCB bits per 
pixel, leading to a range compression ratio CRR = NSB /NCB- We have elsewhere shown that the 
net compression ratio is given by 

CR = CR£)" CRj^. 
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Figure 4.5. Training images (256x256 pixels): (a-e) geometric shapes, (f-g) 
images with text, (h-j) natural scenes, and (gj-1) images containing people or 

animals. Note that lena is represented only in g) and k). 

Since blocksize directly impacts the domain compression ratio CI^, this also affects CR. 
Thus, larger blocks tend to increase the compression ratio, albeit at the expense of visual image 
quality due to blocking effect. This process is illustrated in the notional diagram of Figure 4.4. 
This illustration can also depict multiresolution partitioning, which is possible with TNE. In the 
context of military applications, ATR in conjunction with multhesolution image registration and 
compression is a topic of our ongoing TNE research, which we propose to further explore as a 
subtask in a possible Phase-II effort. 

4.3.2. Codebook Construction. The codebook employed in the TNE compression/pattem 
recognition algorithm discussed herein was constructed from the diverse traming set shown m 
Figure 4.5. Note that this traming set is not necessarily well suited to the lena test unage, but has 
been chosen for its generality. The codebook was constructed using the standard Lloyd-Max 
algorithm, smce codebook construction efficiency is not a consideration in this study. 

4.3.3. TNE Codebook Search. Since TNE primarily employs bit operations, execution is 
efficient at the level of feature vectors. The current prototype of TNE is coded in Microsoft 
FORTRAN (32-bit architecture). The host machine for timing benchmarks Usted herein is based 
on an Intel Pentium processor running at 133 MHz, with a 256 KB cache. In previous tests on a 
Pentium II processor running at 266 MHz with a 512 KB cache, the execution times were 
reduced by a factor of approximately 4.3. In a completed miplementation, TNE's execution time 
could be significantly decreased by coding m C or assembly language. Benchmark tunes cited 
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below are for encoding (i.e., discovery and assignment of a best-match exemplar index for each 
source block in an image) as well as decoding (projecting the exemplar indexed by a compressed 
pixel onto the corresponding source domain). On a Pentium 133 MHz processor, the decoding 
step required approximately 0.3 seconds for a 512x512-pixel image, for exemplar size ranging 
from 4x4 pixels to 16x16 pixels. Further details of execution times as a function of exemplar 
and codebook size are given m [Key99], where we showed that TNE offers a speedup, as 
opposed to search based on a Euclidean distance matching criterion, ranging from 52.8:1 to 
129.8:1, which is a typical performance gain for the type of imagery and computer employed in 
these tests. As M increases, the resultant speedup tends to increase, since the work required for 
TNE is O(log M), while Euclidean-based search incurs at best 0(M) work. 

We next consider ATR operations over TNE encoded imagery. 

4.3.4. Example Application: TNE-based ATR. TNE can be applied to target recognition by 
constructing an agreement map based on a database of target templates. As described in Section 
3.1, tihie TNE encoding of each target template comprises a column of the agreement map 
selected from the template database according to source pixel greylevel and location within an 
encoding block, as shown in Figure 4.6. Bit operations on the agreement map colunms, or 
between groups of columns in the agreement map, comprise the analogues of an image template 
correlation operation. 

In practice, TNE-based target classification is an analogue of a template matching operation 
over the range space of a TNE-encoded image. In TNE, target templates are encoded in the 
agreement map columns, and matching is performed over a TNE encoding of each source block. 
This is exemphfied in Figure 4.7, which demonstrates the superiority of TNE's matching 
technique versus Euclidean distance based classificatbn. 

The binary pointer table facilitates construction 
of the Agreement Map based on stored descriptors 
keyed to component values of the test vector. 
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Figure 4.6: Schematic diagram of TNE as a target classifier. 
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TNE Classification is IVIore Robust in the Presence of 
Data Corruption tlian Euclidean Distance iVIetrics 

Target 
Imageryl 

Badly 
Corrupted 
Target Imagery 

16 by 16 Images 

Selected 
Templates 

Classification, TNE Classification, Euclid 
Figure 4.7: Example ofTNE-based classifier applied to noisy aircraft imagery. 

It is possible to configure TNE hierarchically to produce more efficient search. For example, 
one could apply an operation O to a group of columns in an agreement map mo to produce a 
reduced agreement map mi, then apply mi to a source image a to produce approximate target 
classification, in categories Ci = {cn, cn, - , c\„}. Without applying O to mo, one has 
categories Co = { coi, CQZ, ..., com}, where co; c cij for some 1 < i < w and 1 < j < «, with n<m. 
In preliminary tests, this clustering procedure produces accurate classification of targets in noisy 
imagery, similar to the results shown in Figure 4.7. We expect to analyze and present related test 
results in a future publication. 

4.3.5. Example Application: TNE-Based Compression. Application of TNE encoding and 
search techniques to the training unagery shown in Figure 4.5 yielded an agreement map that 
was input to a TNE classification algorithm configured for rniage compression. The 
compression results for the Lena image are shown in Figure 4.8, and performance of the TNE 
algorithm, expressed as MSE versus CR, is graphed in Figure 4.9a. The latter figure instantiates 
tiie relationship between CR, MSE, and codebook size M, which is not apparent in the small 
sample shown in Figure 4.8. 
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Source Image Blocksize: 4x4 pixels Blocksize: 4x4 pixels 
tena M = 256   CR= 16:1 M=1024 CR= 12.8:1 

612x512 pixels MSE:   0.022 MSE = D.019 

Blocksize: 8x8 pixels Blocksize: 8x8 pixels Blocksize-10x10 pixels 
M = 256   CR = 64:1 M=1tE4   CR = 51.2:1 M = 128 CR = 114 3:1 

MSE = 0.0377 IVISE:   0.0355 MSE = 0.0492 

Figure 4.8: Example TNE compression results on Lena image, where M denotes codebook 
size, mean-squared-error (MSE) is expressed as a fraction of full-scale intensity 
over the interval [0,1], and CR denotes compression ratio. 

In Figure 4.9a, MSE is shown to mry slightly more than 0(CR), thus appearing to grow 
more slowly at higher compression ratios. This phenomenon, which is common to block- 
oriented compression transforms, is due to the rapid loss of high-frequency detail at low to 
moderate compression ratio (quantization in small to moderate blocks), followed by the gradual 
loss of low-frequency detail as blocksize increases. This is a physically valid observation, since 
low-frequency components predominate in natural imagery, where selected spatial infomation 
tends to scale as llf where/denotes spatial frequency [Wu94]. For example, compare the result 
obtained in Figure 4.8 with CR == 16:1 at blocksize 4x4 pixels with the result for lOxlO-pixel 
blocks at CR = 114.3:1. The codebook sizes are within a fector of two; hence, the decompressed 
images are comparable. Note the loss of high-frequency detail and the induction of blocking 
effect in the latter image. As discussed previously, blocking effect is a severe problem in VQ- 
compressed imagery, which limits the achievable compression ratio to approximately 200:1 for 
512x512 pixel imagery, which has lOxlO-pixel blocks. The degradation of image quality as a 
result of blocking effect is noted in Figure 4.9a, and measures of such boundary effects are 
discussed in [Cai98], to which the reader is referred for ftirther detail. 
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0.04 

0.02-1 

0.00- 

64<M<4096 

i ..."" 
,5.«» 

Blocking effect prohibitive 

Method    M RMSE Time, sec 

Euclidean 2048 0.022 258.8 
TNE-1     2048 0.024 2.6 
TNE-2     2048 0.023 4.9 
TNE-3     2048 0.023 3.9 

Euclidean 4096 0.021 441.5 
TNE-1     4096 0.022 3.4 
TNE-2     4096 0.022 4.5 1—I—I—I—I—I—I—I—I—I 

0 40 80 120 160 200 240 280 320 360 400 

CR 

(a) (b) 
Figure 4.9: Example TNE compression performance on 512x512-pixel Lena image: (a) MSB 

versus CRfor codebook size M ranging from 64 to 4096 exemplars, and (b) encoding 
times for Lena imagery of Figure 4.9 on a 133MHz Pentium running Microsoft 
Fortran. 

4.4 Heuristic Overview of TNE Paradigm for Data Fusion and ATR 
We assume that the ATR process requires the comparison of multiple data blocks or test 

vectors from different sensor/classifier assets with a library of sought after target-related 
exemplar or training set vectors. We proceed by placing acceptance bounds around each 
component value of each test vector collected and determine the number of conponents from 
each trainmg set exemplar that fall within these bounds. We generate a binary vector for each 
training set exemplar as was shown in Figure 4.3. This binary vector iidicates the components 
of the test vector that agree with a particular database exemplar. Note that the intervals of 
agreement can be all equal or weighted as is appropriate. At the heart of the TNE paradigm is a 
procedure for very efficiently deriving this agreement map for the entire library without 
computation. 

As showed in Figure 4.1, we construct a binary vector for each quantization level along each 
coordinate axis (vector block dimension). This binary vector contains a bit for each exen^jlar in 
the training set. If the N-space box corresponding to the agreement intervals about each training 
set exemplar vector point projects 
onto the particular quantization 
level, a 1 is assigned, otherwise a 
0. The utility of these binary 
agreement vectors is that once they 
are constructed, a virtual 
agreement map for any new test 
vector can be specified 
immediately by simply using the N 
test vector component values as 
pointers into the larger, pre-derived 
table. Also, as shown in Figure 
4.10, they can be combined 
logically  to   facilitate   inferences 

Test Vector = 

I 
117 
19 

Agreement by Component between Test Vector 
And Each Training Set Exemplar 

Component 1 agreements ("1") 

-^(117>-^ 1101000010000001100000010000000... 

Component 2 agreements ("1") 

-^( 19)-* 0000010000101000100110001001100... 

Agreements: component 1 AND component 2 

0000000000000000100000000000000... 

Agreements: component 1 OR component 2 

1101010010101001100110011001100... 

Figure 4.10 Simple example: a two-dimensional system 
(i.e., two pixels per vector block) illustrates the utility of 
the binary agreement vectors. Note that only one 
Training Set exemplar matches both components of the 
test vector. 
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with respect to test vector classification. 

4.4.1 Data Fusion in TNE Paradigm 
Note that the process outlined above is not limited to data from one sensor or sensor-type. 

We can readily accommodate multiple data sources by hcreasing the dimensionality of the 
signature vector to include components (e.g., samples, pixels, or state information) from all tiie 
available sources. When a particular source is not present, its representation in the search space 
is null. 

For example, if three sensors collect K, M, and N sanples, respectively, then the resulting 
query (test) vector will contain K+M+N components.   We illustrate the specification of the 

Signal Vector 

y 
.SENSOR 

SENSOR 
2     < 

' SENSOR H 
3 

Multi-sensor test vector 

Binary Pointer Table, Dimension 1 
iwiaiitoioioiiiDOOOoiii . 

Training Set 
ExemplarA(columns 

Table, Dimension M 

OtOOIDIOIOOOOIOIIIIOOOOdO. : 
oioiiiooioiojoodioiotixMO : 
oi(K)i6ioiod(xrioiiiioi»«»„. 

"agreement 
map" (AIM) 

1000101010001010010010101.... 

'■■■■■■■■■■I 

Time = t^, 

provides pointers to retrieve 
corresponding training set i 

Figure 4.11a: Specification of the single (virtual) Agreement Map via test vector component 
pointers, here derived from three fiised sensor data types 

Successive 
observations 

Training set 

X11 
X21 
X31 
X41 
X51 
X61 
X71 
X81 
X91 

x12 Xl3 x14 
x22 x23 x24 
x32 x33 x34 
x42 x43 x44 
x52 x53 x54 
x62 x63 x64 
x72 x73 x74 
x82 x83 x84 
x92 x93 x94 

Dimension • 
:. (pixel, sample, etc.) 

Sum by components 
across agreement maps 

AM-N 

Sum across components 
on one or more agreement maps 

Figure 4.11b: The TNE Algorithm associates input test vectors with their respective training set 
agreement maps (without any computation, only memory accesses). Multiple test 
vectors from sensor data give rise to sequences of agreement maps that together 
contain volume clusters of agreement events resulting from the data collection. These 
clusters support inferences with respect to target ID and/or false alarms. 
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agreement map via the TNE algorithm in Figure 4.1 la. Figure 4.1 lb illustrates how a sequence 
of observations (i.e., test vectors) leads directly (and at very low complexity) to an array or 
sequence of AMs associated with the specific collection sequence. We can think of this array 
(denoted by AM-1, AM-2, ...), where each AM corresponds to a test vector, as a higher- 
dimensional representation of agreement events indexed by training set exemplar and vector 
component, to be statistically analyzed as it evolves temporally. This 3-D bmary structure 
records agreement events classified throughout a collection session. Target ID and false alarm 
inferences can subsequently be derived from observed clustering of the agreement events. 

Figure 4.12 illustrates that much false alarm rejection can be achieved by dithermg the AMs 
*>«&■*»£ 

.^   Result of 1 pixel dither up, down, right, and 
^; left; each followed by binary "AND" operation. 

' 'j,3 Then resulting maps are "OR'ed" to produce 
"  this result. Note the noise suppression. 

Figure 4.12: TNE data Jusion process: Here, as an example, we tile an image into 8 by 8 pixel 
partitions, which for this example, we regard as a training set. We select a single image 
partition as a test vector and add noise to produce 20 realizations. We then use TNE to 
generate 20 agreement maps, which we sum and display as shown (lower left). We then dither 
each AM by one pixel in each rectangular direction and perform a binary AND operation on 
each pair. Finally, we apply the binary or operation on the four results, ie.,from dithering 
left, right, up, and down, as shown in the right-hand column. This procedure significantly 
reduces noise in the agreement event space. The resulting bit sum measure is shown at lower 

 right We emphasize that these results are obtained with little computational work. 
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by one pixel and applying the binary and operation. We have found that this procedure exploits 
the important phenomenon of target spatial locality in ATR imagery. For example, we dither in 
each pixel direction (e.g., NEWS) and then apply the binary or operation to tiie results. The 
result is that at the cost of a moderate number of Boolean operations on a binary table, TNE thus 
yields a map of all noit isolated agreement events resulting from a collection sequence. Note too 
that most computer systems can do these Boolean operations 32 or 64 at a time (i.e., by applying 
the binary bit operations to two loaded 32- or 64-bit integers). 

4.4.2 Data Fusion, AM Processing 
Pure component voting of the agreement map entails summing each colunm to ascertain the 

number of agreements (i.e., N-Hamming distance) per reference pattern. As indicated, we sum 
the columns of the agreement map to obtain a voting score for each template in the training set. 
In some applications, it is advantageous to first apply the binary or operation to the columns 
related to closely correlated templates, for example, those corresponding to two configurations or 
articulations of the same target, prior to bit summing. In cases wherein multiple signal vectors 
are matched to clusters of templates from different candidate classes, we have found it useful to 
sort these sums while keeping track of their associated target IDs. We then select only the 
maximum few percentiles of these sums, i.e., templates that had a relatively good agreement 
score, and sum tiiese by target ID or target class as desired. 

4.4.3 Alternate Hardware Implementations 
FTI teamed with University of Florida and Harbor Branch Oceanographic Institute on a 

contract effort (STTR N98T-003) with the Office of Naval Research (ONR) to inplement TNE 
and other signal processing functions on reconfigurable computers (RCs), particul^-ly field 
programmable gate arrays (FPGAs). Our objective in this effort was to leverage recent and ojh 
going team foundational work to produce a surveillance processor with imprecedented speed, 
robustness, and adaptability. We show a simpUfied view of the processor architecture in Figure 
4.13. As shown, each FPGA manages a portion of the agreement map. The components of the 
sensor vector(s) are passed to each FPGA block simultaneously where they are used as pointers 
into the stored binary table. In this example configuration, column sums are then done and the 
best result reported. Finally, the 
global best match is readout in real- 
time. 

4.4.4 TNE-Driven Inference Engine 
To illustrate the TNE paradigm 

applied to a s>stem of networked 
multiple ATR sensors and classifiers, 
consider the following configuration. 
We assume that each asset is 
continually collecting test signature 
vectors and sending these directly back 
to a TNE/MNN-based inference 
engine as network resources permit. 
At the central processing point, TNE is 
applied to each test vector from each 

Test Vector 

'-' Agreement Map [Sensor 2] |. 
(scattered through table)    " 

Agreement Map [Sensor 1] 

DSP 
(FPGA) 

DSP 
(FPGA) 

DSP 
(FPGA) 

DSP 
(FPGA) 

Figure 4.13: TNE implemented via a parallel array 
ofFPGAs 
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asset in successive time slices. Depending on the signal to noise ratio, these collected vectors 
(data blocks) may conpare poorly with any training set exemplars. This will resuh in random 
component matches in the resulting agreement maps, with an absence of identified targets. After 
the dither process described and illustrated above, the AMs would be expected to be virtually 
null. However, as the targets draw nearer to one or more recognizable assets (previously- 
mentioned effect of 5paftfl/ locality), an increased incidence of agreements with associated 
training set exenplars is expected. Here, the contributions from different assets may be 
weighted prior to their combination, to account for changing environmental conditions, in order 
to increase Pd and decrease Rfa. The utility of the TNE AM structure in ATR inference is 
further discussed in Section 6. 
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5. MNN Pattern Recognition Paradigm 
Morphological Neural Networks (MNNs) are an emerging pattern recognition technology 

that significantly improves upon the classification accuracy and performance characteristics of 
classical neural nets (CNNs). Morphological NNs are based on a nonlinear kernel that employs 
addition and maximum in a maximun>of-sums or minimum-of-sums configuration, versus 
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classical NNs that employ multiplication and addition in a sum-of-products configuration. As a 
result of substituting addition for multiplication, the computational complexity is significantly 
reduced; MNNs can compute much faster than their classical counterparts. Also, classical NNs 
such as the Hopfield net have limited information storage capacity and generally unreliable 
pattern classification accuracy for all but a few highly distinct patterns. In contrast, associative 
memories based on MNNs can store and accurately retrieve the theoretical maximum number of 
patterns (2^ Boolean-valued pattems of length N) versus only 0.15N Boolean patterns for the 
Hopfield net [Lip87]. Because MNNs are based on an efficient kernel and converge in one pass 
of the net, they have short framing times that support the use of MNNs in adaptive pattern 
recognition applications. Section 5.1 presents the mathematical theory of MNNs and 
morphological perceptrons, while Section 5.2 compares MNNs with previous and related 
research. Section 5.3 contains several applicative examples and complexity analysis. In Section 
6, we show how TNE and MNNs can work together to improve pattern classification efficiency 
and accuracy in a Bayesian paradigm. 
5.1. Mathematical Description of MNNs 

We begin with an overview of CNN and MNN concepts, then progress to MNN perceptrons 
and learning algorithms. It is well known that content-addressable memories based on the 
Hopfield net have two key deficiencies. First, the number of pattems N that can be stored and 
accurately recalled is severely limited. If N is too large, then the net may converge to a spurious 
pattem that differs from all stored exemplars, which produces a "no-match" output in classifier 
applications [Lip87]. Hopfield remedied this defect by generating patteras randomly and 
keeping the number of classes Nc < 0.15N. For example, a Hopfield net for a simple (Nc = 10 
class) problem would require more than 70 nodes and over 5,000 connection weights. Second, 
exemplar pattems in the Hopfield net are unstable if they share many bits in common with other 
exemplars. By unstable, we mean that after the exemplar is applied to the net's input, the net 
converges to a different exemplar. 

5.1.1. Mathematical Overview. The primary distinction between traditional or classical 
NNs and MNNs is the computation performed by an individual neuron Computation 
represented by a classical NN (CNN) with a linear inner-product kemel (multiply-acciraiulate 
newon) is based on the algebraic stmcture (R,+,-)- The governing equation of a CNNs y* 
neuron is given by 

tj(x)=ixiWij-'?j, (5.1) 

where the input vector is denoted by x € R", xt denotes the value of the f^ neuron, w,y denotes 
the synaptic strength between the f^ and f^ neurons, dj denotes the threshold of the 7* neuron, 
and Xj is the total input to they* neuron. 

In contrast, morphological neural networks use lattice operations v (maximum) and A 

(minimum), and + from the semi-rings (R_„,V,+) or (R<„,A,+'). Here, the extended real 
numbers R_„ = Ru {-00} and R„ = Ru {«} have the following basic arithmetic and logic 
operations. The symbols + and +' denote the usual addition operation with the stipulation that 
a + (-00) = (-00) + a = -00Vae R.^^. Similarly, a+'oc = oo+'a^oo'iae'R^. The operations 
V and A respectively carry the additional stipulation that av(-0°) = (-00)va = ayae R_^ 
and aAoo = ooAa = aVae R„. 
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Note that the sjonbol -«> acts like a zero element in (R_„,V,+) if one views v as addition 

and + as multiplication. Similar comments hold for «» in (ROO,A,+')- Also, the role of the 
multiplicative   identity   in   the   structure    (R,+,-)   is   filled   by   the   number   1   (i.e., 

1- a = a 1 = a Va e R). In the structures (R_„,V,+) and (ROO,A,+')» this role is filled by 0, since 
0 + a=a+0=a VaeR. 

Using (R_^,V,+), computation at a neuron in an MNN for input X = (XI, ...,JC„) is given by 

t;(x) = ;?y Vr^(x; + w^) .(5.2) 

or 

1=1 
(5.3) 

where nj = +1 denotes whether the f^ neuron causes excitation or inhibition on they''' neuron, and 
Pj~ ±1 denotes the output response (excitation or inhibition) of the f^ neuron. For excitatory 
input and output action, ry = 1 and pj = 1, respectively. Inhibitory input and output responses 
have the values r,y = -1 and Pj = -I, respectively. The computational model for a neuron in an 
MNN that uses the maximum operator is illustrated in Figure 5.1. 

The activation function f(tj) in an MNN E generally a hard limiter. Thus, the governing 
equation of a morphological neural net using the maximum operation is given by the foUowmg 
equation: 

ty(x) = / PjVrij{xi + Wij] 
1=1 

Via the dual structure (R^O, A,+), the preceding equation becomes 

tj(x) = f PjArij{xi+Wij) 
j=l 

The preceding two equations represent the basic morphological operations of dilation and 
erosion - hence the term morphological neural network. 

40 



STTR Army02-T004  Topic Title: Analysis and Characterization of Pattern Classifier^ 
GASP • Generator for Adaptive Statistical Pattern Recognition Systems     January 31, 2003 

Figure 5.1: Computational model of a morphological neuron. 

Several advantages accrae from replacing the arithmetic operations in traditional neural 
computing with lattice-based operations. It is apparent from Equations (5.2) and (5.3) that 
morphological neural computation does not involve multiplications but only the operations of 
logical or as well as and (respectively implemented as maximum and minimum over the Boolean 
numbers), together with addition and subtraction. This provides for extremely fast neural 
computation, and an algorithm that can be more readily implemented in hardware than a classical 
NN algorithm such as the Hopfield net. Convergence problems and lengthy training algorithms 
are often nonexistent [Rit97a,99a]. It has been shown that morphological associative memories 
are extremely robust in the presence of noise and have unlimited storage capacity 
[Rit97b,98,99b;RitXX,Sus00]. There is a close, natural connection between lattice based 
computing and ftizzy set theory, which makes lattice based networks amenable to handling more 
general data types and particular types of learning models [Pet98]. Finally, morphological neural 
networks are capable of solving any conventional computational problem and, thus, can be 
inherently useftil in a wide variety of application domains [Rit96]. 

5.1.2. Lattice Algebra.    In this discussion, we use the lattice algebra   (R<„,A,+) for our 
underlying neural computation. This algebra obeys the following laws: if a,b,ceR^, then 

a + {b Ac) = {a+b)A{a + c) 

a Aoo =oo Aa = a 

a + oo zzoo + a = oo 
(5.4) 

a+0=0+a=a 
To compare this system with the system (R,+,- ) used in traditional neural computing, we have 
the analogous laws, if a,b,ceR, then 

a-{b + c)={a-b)+{a-c) 

a+0=0+a=a 
(5.5) 

a.O = Oa=0 

a-l=la = a 
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Thus, in the system (R„,A,+), the symbol oo acts as the null element and 0 as the unit element, 
if we view A as addition and + as multiplication. 

In addition to the laws given in Equations (5.4) and (5.5), the two systems share many other 
properties such as commutativity and associativity. In this sense, the two systems are 
mathematically very similar and, therefore, one could be easily substituted for the other in many 
application areas. However, there are several differences, a major one is the lack of inverses for 
the lattice operation of minimum, namely A . It is this lattice operation that provides for the 
unique and distmct properties of morphological neural networks. 

It must also be mentioned that Koch and Poggio make a strong case for multiplying with 
synapses, i.e., for x^ ■ wy [Koc92].' In the model presented herein, multiplication could have 

been used just as well. A mathematical equivalent theory can be obtained by replacing the lattice 

(R«,,A,+) with (R-^,V,+), where   R-^ ={XG R:JC> O}.   The mathematical equivalence is 

given by the isomorphism cp: R^ ^ R-^ defined by (p(jc) = e~^,V;ce R, and (p(oo) = 0. It is 
readily seen that (p is a bijection. Furthermore, <?(x + y) = <p(x) ■ (p(y) and 
(p(x Ay)= (p(x) V (p(y). Therefore, (p preserves the algebraic structure and is an isomorphism; 
note also that (p(0) = 1. Hence, identities are mapped to identities. The inverse of 9, denoted by 

cp~^: R-^ -^ R«, is given by 9"* (x) = - ln(x) for jc > 0 and 9"^ (0) = 00. This proves that, 
mathematically, nothing is gained by replacing the additive lattice with the multiplicative lattice. 
Although a multiplicative lattice is more intuitive from a biological standpoint, a reason for using 
additive synapses is the reduction of computational cost and ease of describing the proposed 
(morphological) model of computation. This is especially true for emerging forms of 
morphological neural computing, for example, computing using single neurons with dendrites 
[Rit02]. 

Additionally, the additive lattice is directly related to mathematical morphology, a topic well 
known to the image processing and computer vision community [Dav92,Hei94]. We realize that 
some researchers are not famiUar with the notion and uses of algebraically equivalent structures. 
In particular, questions may be raised pertaining to the meaning and use of negative weights, 
which arise quite naturally when using the lattice (R«,,A,+). Traditionally, weight is a positive 
quantity with the sign determining whether the input is excitatory or inhibitory. Negative 
weights have nothing to do with inhibition in the additive lattice, where the sign of ry determines 
excitatory or inhibitory input. For a biological (or traditional) interpretation of negative weights, 
simply observe that these correspond to large positive weights m the equivalent multplicative 

lattice (R^^A, ■) as W = e'^'J > 0 Vw^- e R and e"^ -^ 00 as JC ^ -<». 

The lattice (ROO,A,+) has a natural dual (isomorphic) structure given by (R_^,V,+), where 
VxeR_^,x+(-00) = (-00) + X = -00. For each Vx e R+^ = R U {-°o,°°}, we define its dual or 
conjugate by x* = -x, where - (-0°) = 00 . The following duality laws are a direct consequence of 
this definition: 

(x*)* = X 

(xAy)* = x*vy* (5.6) 
(xv y)* -x*Ay* 

42 



STTR Army02-T004  Topic Title: Analysis and Characterization of Pattern Classifier^ 
GASP - Generator for Adaptive Statistical Pattern Recognition Systems     January 31, 2003 

The function V|/: R_«, -»R«, defined by \|/(jc) = jc* is an isomorphism. Therefore, a 
morphological neural net using the operation v can always be reformulated in terms of the 
operation A, and vice versa. Due to the relations -(xAy) = -xv-y and -XA-y = -(x v y) 

of Equation (5.6), and the use of inhibitory input and output, the algebra (R_«,,V,+) is 
imphcitly incorporated in Dr. Ritter's current research in dendritic computation in morphological 
neurons [Rit02]. 

5.1.3. Morphological Operations. Given the computations represented by Equations (5.2) and 
(5.3), let v' denote the transpose of the vector v. The total network computation for a matrix 
memory such as a lipfield or Kohonen memory with input a at time t can be expressed in 
matrix form as 

nt+l)=W-ii(t), (5.7) 
where si(t) = (ai(t),---,a„(t)y, T(t+l) = {Ti(t+l),---,T„(t+l)y, and W denotes the nXn 
synaptic weight matrix whose i/^ entry is w,y. Analogous to Equation (5.7), the total 
morphological network computation for a morphological matrix memory can also be expressed 
in matrix form. In order to do this, we need to define a matrix product in terms of the operations 
of tiie lattice structure (R,V,A,+) . For an mxp matrix A and a pxn matrix B with entries from R, 
the matrix product C = A ElB, also called the max product of A and B, is defined by 

p 

Cij = V Uik + bkj = (an +bij)v(a^j +b2j)v-v[aip + bpj). (5.8) 
k=l 

The min product of A and B induced by the lattice structure is defined in a similar fashion. 
Specifically, the if^ entry of C = ^ HB is given by 

p 
Cij = A Oik + bkj = (fl/i + bij)A [ai2 + ^2;) A • • • A [aip + bpj). (5.9) 

k=\ 

The total MNN computation for an associative memory can now be expressed in the matrix 
forms 

T{t+\) = wmsi(t) (5.10) 
and 

r(^ + l) = ^0a(O (5.11) 
respectively. 

Some additional comments concerning lattice-based operations are pertinent when discussing 
morphological network computations. When using the lattice (R,V,A+), the maximum (or 
minimum) of two matrices replaces the usual matrix addition of linear algebra. Here, the y * 
entry of the matrix C==AvB is given by Cy =aij vby.   Similarly, the minimum of two 

matrices C = AAB is defined by Cy = ay A by. Finally, we say that A is less or equal than B, 

denoted by A< B, and A is strictly less than B denoted hy A < B, if and only if for each 
corresponding entries of these matrices we have that Oy < by and ay < by, respectively. 

The algebraic structure (R,V,A+) provides for an elegant duality between matrix operations. 
For any real number r, we define its additive conjugate r* = -r. Therefore, 

(r*)* = r     and      r Au = (r*v «*)*,   Vr,M e R . (5.12) 
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m matrix^* = (bij)mxn defined by by = [a,-,]*, where [o/,]* denotes the additive conjugate of Oji. It 
follows that 

Now, if ^ = (aij)mxn is an 7M X n matrix with ay e R, then the conjugate matrix A* of A is the n x 

= [aji]*, where [o/,]* denotes the additive conjugate of Oji. It 

AAB = {A*V B*)* (5.13) 
and 

AnB = (A*mB*)* (5.14) 
for appropriately sized matrices. This impHes that a morphological neural net using the 
operation El [i.e., Equation (5.10)], can always be reformulated in terms of the operation □ 
[i.e.. Equation (5.11)], and vice versa, by using the duality relations expressed in Equations 
(5.13) and (5.14). 

Having defined the necessary mathematical tools, we next discuss basick properties of 
morphological neural networks and present some examples. 

5.1.4. Morphological Associative Memories. The ability of human beings to retrieve 
information on the basis of associated cues continues to elicit great interest among researchers. 
For example, a few pictures from a movie clip can evoke memory of the entire movie's plot. 
Similarly, a glimpse of a partially occluded face in a crowd can be sufficient basis for 
recognizing an old fiiend. Investigations of how the brain is capable of constructing such 
associations from partial information have led to a variety of theoretical neural-network models 
that act as associative memories. The basic goal of these artificial associative memories is the 
retrieval of complete sorted pattern from noisy or incompbte input pattem keys. These 
associative memories are categorized as hetereoassociative or autoassociative, with the latter 
comprising the primary focus of this discussion. Among all autoassociative networks the 
Hopfield network is the most widely known [Hop82a-b,86]. A large number of researchers have 
exhaustively studied this network, its variations, and generaUzations [Abu85,Ami85,Che86, 
Den86,Kee86,Kos87a-b,McE87]. 

In classical neural network-theory, for a given input vector or key x = (xi,---,x„y, an 

associative memory FT recalls a vector output signal _/(y), where y = ^x. If f(yi) = yi V?, 
theny(y) = y and the memory is called a linear associative memory, otherwise it is referred to as 
a semilinear associative memory. A basic question concerning associative memories is: What is 

the simplest way to store A: vector pairs (x\y^),---,(x*,y^), where x^eR" and y^eR"* for 
^ = 1,---,A: in an m X « memory W7 The well-known answer to thtat question for linear and 
semilinear associative memories is to set 

W=iy^-ix^y. (5.15) 

In this case, the y* entry of Wis given by wy = Z^^iy^x^ . If the input pattems x^• • ■ ,x^ are 

orthonormal, that is 

then 

Pr-x''=^l.(xl)'-(-. + y^.(x^)')-x'=y'. (5.17) 
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Thus, we have perfect recall of the output patterns y , • • •, y . If x , • ■ •, x are not orthonormal 
(which they are not m most reaUstic cases), then the noise term 

iV= ly^'-((x^)'-x')^0 (5.18) 

contributes to crosstalk in the recalled pattern by additively modulating the signal term. 
Therefore, filtering processes using threshold functions become necessary in order to retrieve the 
desired output pattern. 

Morphological associative memories, which are based on the lattice algebra described in 
Sections 5.2 and 5.3, are surprisingly similar to these classical associative memories.  Suppose 

we are given a vector pair x = (j:i,---,jc„)'e R" and y = (yi,---,ymy^ R'"- An associative 
morphological memory that will recall the vector y when presented the vector x is given by 

^yi-xi 
W = y EI(-x)' = 

yi-Xn 

(5.19) 

since If satisfies the equation PF El x = y, as can be verified by the simple computation 

wm x= 
^i=i(yi-Xi+Xi) 

= y- (5.20) 

Note the similarity between Equations (5.15) and (5.19) when k= 1. The natural question 
one may ask is whether or not this concept can be extended to cases where k> 1. The answer is 
a qualified "yes", due to the fact that problems which in some way are analogous to those 
associated with ordinary associative memories [i.e.. Equation (5.18)] also occur in morphological 
associative memories. 

Henceforth, let (x\y^),---,(x*',y*')be A: vector pairs with where x^ = (;c^,---,jc|)e R" and 

y =(yi^---,yn)^^'" for ^ = h---,k. For a given set of pattern associations 

•j(x^,y^):^ = l,---,^| we define a pair of associated pattern matrices iX,Y), where 

Z = (x\ • • •, x^) and 7 = (y ^ • • •, y*^) . Thus, X is of dimension nxk with i/^ entry jc/ and Y is 

of dimension mxk with i/^ entry yj . 

Since y^El(-x^)' = y^0(-x^)', we reduce notational burden by denoting these identical 

morphological outer vector products by  y^ x(-x^)'.   With each pair of matrices (^,Y), we 
associate two natural morphological mXn memories WXY and MXY, defined by 

k    r 1 k    r 1 

WxY = ^ [y^ x(-x^)'J     and     MXY = V [y^ x(-x^)'j. (5.21) 

It follows fi-om this definition that 

WxY<y^x{-x^y<MxY    V^ = 1,-,A:. (5.22) 
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In view of Equation (5.20), this last set of inequalities implies that 

WxYBx^ ^\^^x(-x^)'jEk^ =y^ =[y^x(-x^)'J:^MXYEX^ 

V^ = 1, • • • .^ or, equivalently, that 

WxY^X<Y<MxY^^- 
Example 1. Let 

(^] f^l f  ^1 r-n f ^1 f ^1 
0 ,   / = 1 , x2 = -2 , y^ = -1 , x^ = -3 . y^ = -2 

0 
V  / 

0 -4 0 0 0 

x' = 

According to Equation (5.21), the memories WXY and MXY are given by 
3 

Wyy = A 
4=1 

^^X(-X^)'] 

fO 0 0"! 
1 1 1 
0 0 0 

V 

-1   1   3"! 
-1   1   3 

0   2   4, 

r  0   3     0^ 
■2   1   -2 
0   3     0 

^-1   0      0^ 
-2    1   -2 

and 
V 

0   0      0 / 

^;o' = v[y^x(-x^)'] 
4=1 

(0   0   0] r-1 1   3] / 

111 V -1 1   3 V 

0   0   0 
V               J 

0 2   4 
V 

(0   3   3^ 
1    1   3 
0   3   4 

V              / 

r 0 3   0^ 
2    1   -2 
0   3      0 

(5.23) 

(5.24) 

(5.25) 

(5.28) 

(5.29) 

It can be easily verified that WXY O X^ = y^ = M;^ia x^ holds for \ = 1,2,3. For example. 

WxY^^ = 

and 

r-1 0 0^ m f^l 
-2    1 -2 □ 0 = 1 

0   0 
V 

0 
J 

0 w = y (5.30) 

M;fy  El X     = 

ro   3    3"] f  ^1 r-A 
1    1    3 □ -2 = -1 

0   3   4 -4 0 

(5.31) 
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Definition 1. A matrix A = {aij)jnxn is said to be a B-perfect memory for (X,Y) if and only if 

A BX= Y. The matrix A is said to be a Q -perfect memory for {X, Y) if and only liA UX= Y. 

Obviously, ^ is Q -perfect for QC, Y) if and only if AU x^ = y^ for ^ = 1,- • • ,A:. Similarly, A is 

H-perfect for QC,Y) if and only if ^ E x^ =y^ for ^ = !,•••,A:.  Also, if A is 0-perfect for 

(AT,}), then [A □ x^ |.=yf for all ^ = 1,-, A: and all i=\,-,m. Equivalently, 

\/\iij+x])=y}'ii, = \,-,kmAi = \,-,m. (5.32) 

It follows that, for an arbitrary index 7 e {1, ••-,«}, we have 

^^aij^y^-x) yh, = l,-,k (5.33) 

<^aij<A\^}-x))=Wij 

This    shows    that   A    <    WXY-        In   view    of   Equation    (5.26),    we    now    have 
Y = ABX < WXY ^^^Y and, therefore, Wxy BX =Y. A similar argument shows that if 
^ is Q-perfect for QC,Y), then MXY < 5 and MXY^X =Y.   This establishes the following 
optimality criteria for morphological associative memories: 
Theorem 1. If A is □ -perfect for (X,Y) andB is □ -perfectfor {X,Y), then 

A<WxY<MxY<B     and      WxyBX =Y=MXY^^ ■ (5.34) 
According to this theorem, WXY is the least upper bound of all □ -perfect recall memories and 

MXY is the greatest lower bound of all □ -perfect recall meniories for (X, Y). Furthermore, if there 
exists a Q-perfect (Q-perfect) recall memory, then WXY (resp. MXY) is also a perfect recall 
memory. 

The next obvious question concerns the existence of a perfect recall memory. Specifically, 
for what vector pairs ^^y^), ..., ^*,y*) will WXY or MXY provide perfect recall? Once this 
question has been answered, the next logical question pertains to the amount of noise WXYOT MXY 

can tolerate for perfect recall; i.e., if x^ denotes a distorted version of x^, what are the 

conditions or boxmds on x^ to ensure that Wxy El x^ = y^ or Mxy E x^ = y^ ? We provide 
answers to these questions through a series of theorems and corollaries. Proof of these theorems 
are given in [Rit98]. 

The following theorem answers the existence question of perfect recall memories for sets of 
pattem pairs. 
Theorem 2.   WXY is Q -perfect for (X,Y) if and only if for each ^ = l,--,k , each row of the 

matrix [y^ x(-x^)']-'^AT contains a zero entry.  Similarly, MXY is B-perfect for (X,Y) if and 

only if for each ^ = \,---,k , each row of the matrix M xy -[y^ y-(-x^)'] contains a zero entry. 
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Accordingly, Wxy H x^ = y W^ = 1,- • • ,^ if and only if for each % and each row mdex / 

there exists a column index j (depending on | and /) such that w,y= [y^x(-x^ )'],-,•, where wy 

denotes the i/^ entry of WXY- Similarly, MXY 0 x^ =y^\f% = l,---,k if and only if for each t, 

and each row index / there exists a column index7 (depending on ^ and i) such that  Wj,= 

[y^X(-X^)']y. 

Example 2. The memories WXY and MXY given in Example 1 satisfy the conditions of Theorem 
2. For example, for ^ = 2, we have 

and 

'"l3=>'?-^3=[y^X(-x2)']i3 

'"22=3^2-^2 =[y^X(-x2)']22 

'«33=>'3-^3=[y^X(-x2)*]33 

(5.35) 

(5.36) 

The following is an easy consequence of Theorem 2. 
Corollary 2.1.  WXY^X = Y if and only if for each row index i = l,---,m and each ye{l,---,k} 
there exists a column index 7 e {I,- ■ •, n} depending on / and y such that 

^=1 
(5.37) 

MxY^-^ = Y if and only if for each row index i = l,---,m and each ye {!,••• ,k} there exists a 
column index 7 e (1, • • •,«} depending on / and y such that 

x]=A(x]-yf)+yy. (5.38) 

The next theorem provides bounds for the amount of distortion of the exemplar pattems x^ for 
which perfect recall can be assured. 

Theorems. Let x'^ denote a distorted version of the pattern x'^. Then PfYyElx'^ = y'^ if and 
only if 

r \ 

x] <x]vA 
i=l 

ViyJ-y^+xh V7=l,-,« (5.39) 

and for each row index ie{l,---,m} there exists a column index 7,- e {1,• • •,«} such that 
V 
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r 

xl =x'. V 
Ji 

(5.40) 

Similarly, M;5^Ex'^=y'^ ifandonlyif 
/ 

m 
X]>X]AV 

^   1=1 
\ 

\/j = X-,n (5.41) 

and for each row index / e {1,• • •, w} there exists a column index ji e {1,• • •,«} such that 

~7 7 X\  =X'.   A 
Ji        Ji 

MyJ-y}+xh 
4^7 ^' 

(5.42) 

The subscript notation y,- denotes the dependence of the column index j on the particular row 
index /. 
Example 3. Consider the following set of associated vector pairs: 

x' = 

r^'i\ 

-6 ,  y = 1 

1-3, 

x2 = 

f   0> 
-4 , y' = 

( 2\ 

5 

V    J 

x' = 0 ,  y = 

fs 

v^ 

(5.43) 

' ^' v.^ vy \y \y 

If x^=(-4-8-l)', then Xj<x)vA^^^^[V\^2[yi-y} + xj]) for y = 1, 2, and 3.    For 
mstance, 

3 

jcj vA 
;=i 

"^[/i-y^+x}] 
%=2 

V 

= xlvky-yf^xl)v{^}-yf^x{)] 

= -5 V [((-1 - 2) V (-1 - 6)) A ((-1 - 5) V (1 - 7)) A ((-3 +1) v (-3 + 5))]       (5.44) 
=-5 V [(-3) A (-4) A 2] 

= -4>Jc} 
Also, if / = 1, then for the column index y = 3 we have 
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4v 
\ 

:i-[(yJ-.2.-2 yi+Xijvi^l-yf+x. = Xi V 

=-lv[((-l-2+0)v(-l-5+0))] 
= -lv[(-3)v(-7)] 

= -l = x\ 

(5.45) 

A similar comparison shows that for i = 2, the colxram index j = 1 satisfies the equality 

Xi =^1 v(y^^2[>'3->'3+^3])» ^^ ^^^ ' ^ ^' *® column mdexy = 3 satisfies the equality 

^3 =X3 v(y|^2[>'3-J'3+^3])    Therefore, the pattern  x^  satisfies the two conditions of 

Theorem 3 given by Equations (5.41) and (5.42).   In this particular case, the memory WXY is 
given by 

^ 2 

WYY = "XY 

5 

7 

and 
-1   0 

f 2    5 

0^ 
2 (5.46) 

^ El x^ = □ 
0^ 

5   7      2 
-1   0   -2 

(-2)v(-3)v(-l)^ 
lv(-l)vl 

|^(_5)v(-8)v(-3) 

1 

8 

1 
V     J 

(5.47) 

1 

-3 
=y 

J 
which is in agreement with Theorem 3. 

In the above example, xj < x\ and, therefore, x' ^ x^ However, perfect recall is still 
achieved. We shall reflect on this observation in our subsequent discussion on perfect recall of 
corrupted input patterns. 

5.2. Autoassociative Morphological Memories 

If X= 7(i.e., y^ = xS for l, = \,---,k\ then Wxx and Mxx are called autoassociative 
memories. The classical example of a semilinear autoassociative memory is the Hopfield net 
[Hop82a,Lip87]. As shown in Section 5.1, the Hopfield net is given by 

0 if/=; 
Wij = < 
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For an input pattern x = (xi,..., x„), the Hopfield net algorithm proceeds by initiaUzingx/O) = xj 
at time ^ = 0    and then iterates the recursive formula  Xj(t + l)=f[^"wijXi(t)]  until 

convergence. The function/is a hard limiting nonlinearity. 
The morphological analogues of the Hopfield memory are derived from Equation (5.23) and 

given by 

Wif = A (xf -xh      and       m,,- = V (xf -xh . (5.49) 

As an example, consider the five pattern images p\ ..., p^ shown in the top row of Figure 5. 
2. Each p^ is an 18xl8-pixel Boolean image. Using the standard row-major scanning method, 

each pattern image p^ can be converted into a pattern vector x^ = (x^,-' • ,^324 ) by defining 

1    if p^(/, j) = 1 (blackpixd) 

0   if p^(i,j)=0 (whitepixd) 
(5.50) 

In this case, we obtain the perfect recall Wj^B x^ = x^ and M^x^ x^ = x^ for ^ = 1, ..., 5. 
However, using a Hopfield memory for these pattems does not result in perfect recall even in a 
nondistorted pattern is presented to the memory. The bottom row of Figure 5.2 shows the output 
of the Hopfield net when presented with the pattems representing the letters. Although tihe 
pattems "A" and "X" resulted in perfect recall, the pattems "B", "C", and "E" all converged to a 
configuration not represented by any of these pattems. The reason for this is that these three 
pattems are not very orthogonal to each other; i.e., there is a large subset of nonzero pixels 
common to all three pattems. It is well known that Hopfield memories, which are linear 
combinations of pattem features, have difficulties in memorizing pattems that share too many 
bits [Lip87]. 

O   L^   y\ 

Ammmmt InMHi ^r^ ■■■M 

Figure 5.2. The five patterns in the top row were used in constructing the Hopfield memory and 
the morphological memory. The output fi^r either autoassociative morphological memory Wxx 
or Mxx is identical to the input pattems. The bottom row represents the output patterns of the 
Hopfield net when presented with the respective patterns in the top row. 

Although some improvements could be obtained by usmg certain orthogonalization 
procedures [Wal85,Gra86], an even more severe limitation for the Hopfield memory is the 
number of pattems that can be stored for accvirate recall. For instance, doubling the number of 
pattems fi-om five to ten by introducmg the lower case letters shown in Figure 5.3 results in a 

51 



STTR Army02-T004   Topic Title: Analysis and Characterization of Pattern Classifier^ 
GASP' Generator for Adaptive Statistical Pattern Recognition Systems     January 31, 2003 

complete recall failure. Figure 5.4 shows the output from the Hopfield memory when presented 
with the patterns shown in Figure 5.3. 

AHHHk #"'''*%      '    \.   JP ■■■■■I 

D   l«#   /\   tz 

tvl     E3     L^   ' r\  ■  C 
Figure 5.3. The ten patterns used in constructing the Hopfield memory and the morphological 
memories. The output of either autoassociative morphological memory Wxx or Mxx is identical 
to the input patterns. 

Figure 5.4. The output of the Hopfield memory, which remains the same no matter which one of 
the patterns shown in Figure 5.3 is presented to the memory. 

5.2.1. Perfect Recall.   In contrast to the Hopfield memory, in tiie absence of noise a natural 
morphological autoassociative memory will always provide perfect recall for any number of 
patterns programmed into its memory!   The fact that morphological autoassociative memories 
have unlimited storage capacity is given by the next theorem. 
Theorem 4.  Wxx^X = X and M^^Q X = X. 

Note that the theorem places no restriction on the type or number of pattems. In particular, 
the natural morphological memories give perfect recall for all ten pattems or, if desired, the 
entire Roman alphabet of upper- and lower-case letters. Additionally, a consequence of 
Theorem 4 is that the memories Wxx and Mxx are stable with respect to the input vectors x^. In 
fact, as the next theorem shows, the memories converge m one step for any input pattem z 
Theorem 5. If Wx^B z = \ and Mx}^ z = u, then Wx)^ \ = \ and Mx)^ u = u. 

Theorems 4 and 5 point out another major difference between Hopfield memories and 
morphological autoassociative memories. Not only is there an immense difference in storage 
capacity, but perfect recall is guaranteed and recall occurs in one step that can be implemented in 
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parallel. In contrast, Hopfield memories must be run iteratively with neurons firing randomly, 
one at a time, and there is no guarantee of perfect recall for perfect inputs. Thus, morphological 
associative memories behave more like human associative memories. Once a pattern has been 
memorized, recall is instantaneous when the human brain is presented with the pattern. 

5.2.2. Recall of Corrupted and Occluded Patterns. Since the Hopfield net is not capable of 
recalling a large number of perfect exemplar patterns, the Hopfield net's performance is even 
further degraded when these patterns are corrupted by noise or occluded by foregroimd artifacts. 
In contrast, the autoassociative morphological memories discussed thus far are extremely robust 
to certain types of noise and occlusions. 

■l,    ,|i 
I 

ll'' ''I. \ •" 

Figure 5.5. The top row shows the corrupted input patterns and the bottom row, the 
corresponding output patterns of the morphological memory Wxx- 

We say that the distorted version  x'^ of the pattern x"^ has undergone an erosive change 

whenever x'^<x'^ and a dilative change whenever x''^>x'^. Thus, for the above Boolean 
patterns, a change in pattern values fi-om p(y) = 1 to p(y) = 0 represents an erosive change, 
while a change fi-om p(v) = 0 to p(y) = 1 represents an dilative change. The morphological 
autoassociative memory Wxx is extremely robust in recalling pattems that are distorted due to 
erosive changes. These changes can be random (system noise, partial pattern occlusion, etc.) or 
nonrandom (processing effects such as skeletonizing, filtering, etc.) The limitations on the 
amount of distortions are given by the theorems stated in the preceding section. For example, 
defining Wxx in terms of the ten pattems shown in Figure 5.3, and corrupting any of the pattems 
with 50 percent randomly generated erosive noise (i.e., black pattern pixels turned white 
randomly, pixel by pixel) always resulted in perfect recall. Figure 5.5 shows three experimental 
examples where the pattern represented by the letter "X" was intentionally corrupted by use of 
large erosive changes. In contrast to the Hopfield net, which failed to recall the exemplar pattem 
in each case, the morphological autoassociative memory provides perfect recall in all three cases. 
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Figure 5.6. The top row shows the corrupted input patterns and the bottom row, the 
corresponding output patterns of the morphological memory Mxx- 

Although the perfonnance of the autoassociative morphological memory Wxx is excellent in 
the presence of erosive noise, pattern recall becomes impossible when dilative noise in 
introduced. For dilative noise, the dual memory Mxx proves to be the ideal associative memory. 
This follows from Theorem 4 and is also supported by experiment. For example, defining Mxxva. 
terms of the ten patterns shown in Figure 5.3 provides for an associative memory that is 
extremely robust in the presence of dilative noise of these patterns. For instance, the top row of 
Figure 5.6 shows several version of the letter "X" corrupted by severe dilative changes. In each 
of these cases, the memory Afo provided perfect recall. 

The problem with the associative memories Wxx and Mxx is that Wxx is incapable of 
effectively handling dilative noise while Mxx is incapable of effectively handling erosive noise. 

A consequence of Theorem 3 is that if T'>x^, then in many instances, (Wxx ^ ^ ]i ^y^,saA. 

if \^>xl, then we have a high probability that  \Mxx Q xlji^y}.   Hence, dilative noise 
destroys perfect recall for FFAX while erosive noise destroys recall for Mxx. However, we need to 
recall that Example 3 shows that a certain amount of dilative noise may not destroy perfect recall 
for Wxx- A similar observation holds for erosive noise and Mxx- 
5.3. Perfect Recall Conditions for Distorted Inputs 

Although theorems provide necessary and sufficient bounds for the class of inputs that will 
result in perfect recall, they also point out the extreme vulnerabiUty of the morphological 
memories Wxx and Mxx if patterns exhibit both erosive and dilative noise. For this reason, the 
vector 

Wxx^   ^XX^ x^j (5.51) 

will generally not correspond to x'^ if x'^ corresponds to a corrupted version of x'^ containing 

both erosive and dilative noise.    In fact, since   x'^ contains erosive noise, the expression 
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Mxx ^ x^ will most likely correspond to the zero vector. However, the naive idea of first 
presenting a noisy pattern to a memory that is insensitive to dilative noise followed by presenting 
the output pattern to a memory that is insensitive to erosive noise, as represented by Equation 
(5.51), does furnish a first step in constructing an associative morphological memory that is 
robust in the presence of random noise, random occlusion, as well as being capable of recalling 
either skeletonized or dilated versions of patterns. 

The fundamental idea of creating a morphological associative recall memory that is robust in 
the presence of random noise (i.e., both dilative and erosive random noise) is to replace the 
associative memory MXY with a sequence of two memories Mi and Wi that are defined in terms 
of subpattems of the exemplar patterns x . Basically, the memory Mi is constructed such that it 
can associate randomly corrupted version of the exemplar x with a subpattem z' consisting of a 
few select pattem values fi-om x . The pattern x' represents a special eroded version of x . In 
the Boolean case, ideally, z is a sparse representation of x having the property that z « x and 

z^ A x'^= 0 whenever ^ ^^^ 7. Here « denotes "much smaller than" in the sense of containing 
mostly zero-valued pixels , and 0 denotes the zero vector. The morphological memory Mi is 

defined as an associative memory for the patterns x^, ^ = l,---,k so that Mj 0 x^ =z^. 

Furthermore, since x^ represents a version of z^ corrupted only by dilative noise, we also have 

MiB x^ =z^. 

The memory Wi is defined as an associative memory that associates with each input x^ the 

pattem y . Thus, xmder the correct conditions, we obtain Wi U   [MJ □  x^)= ^1 E z^ = y^ as 

well as Wi n   [Ml E3 x ^ j= ^j E z^ = y^ for randomly corrupted patterns x^. 
We now make these notions more rigorous. 

Definition 2. Let Z = (z^ ,z^, ■ • •,z*') be an nxk matrix. We say that Z is a kernel for (X, Y) if and 
only if the following two conditions are satisfied: 

1. Mzz 0 X = Z; 
2. WzY^ Z^Y. 

It follows that if Z is a kernel for (AT, 1), then 
WzY El   {Mzz n X)=WzY^Z=Y. (5.52) 

Equation (5.52) defines the morphological associative memory system 
input -^ Mzz -^ ^XY ~> output (5.53) 

which, for a properly chosen kernel Z, will be robust in the presence of random noise in input Z. 
Defmition 2 does not provide for a methodology of finding kemels nor does it furnish direct 

insight into the question of why kemels are useful in constructing associative memories that are 
robust in the presence of random noise.   The next theorem provides a partial answer to these 
questions. 
Tlieorem 6. IfZ is a kernel for {X,Y), then Z<X. 

If Z = (z ,z^,---,z ) is a kemel for QC,Y), then the colimm vectors x^of Zare called kernel 

vectors for QC,Y). According to Theorem 6, z^ < x^ for ^ = 1, 2, ..., A;. Thus, the kemel vectors 
represent eroded versions of the pattems x\ ..., x*. 
Example 4. The set 
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(5.54) 

is a set of kernel \ectors for the set of vector pairs given in Example 1.   The corresponding 
memories Mzz and WZY are given by 

( ^' 
0 

-2 
5 

'  0' 

-2 

-4 
j -3 

-2 

Mzz = 

The set 

f   0   3   4^ 

0   0   2 

-2    1   0^ 

^  0^ 
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^  0^ 

-2 

-4 

WZY = 

-1 0 2^ 

-1 1 0 

0 0 2 
(5.55) 

/  n\ 

-3 
V    yj 

(5.56) 

provides another example of a set of kernel vectors for the vector pairs given in Example 1. This 
shows that kernel vectors are not unique. 

The defmition of kernel vectors does not preclude that z^ = x^ for some ^ or even that Z=X 
of course, if Z=X, then notiiing will have been gained in the quest for creating morphological 
associative memories that are robust in the presence of random noise. For the same reason, cases 
where z' = x^ for some ^ need to be avoided. This leads to the notion of proper kernels. If Z is 

a kernel for (X,Y) with the property that z^ ?i x^ V^, then Z is called a proper kernel for (X,Y). 
Note that the two kernels in Example 4 are not proper kernels since for both kemels, we have z? 

= X . However, the notion of a proper kernel does not imply that z^<x^\/t,. It only implies 

that for each ^ = 1, 2, ..., ^, there exists an index  i^e{l,---,n} such that z| jt jc|.    In other 

words, each kernel vector z^  has at least one coordinate that differs firom the corresponding 
coordinate of x .    According to Theorem 6, this coordinate must be strictly less than the 
corresponding coordinate of x . 

IfzT^<xY<xT^,then 

z"! = Mzz 0 z^ ^ Mzz 0 x"*^ < Mzz 0 x'>' = z'>' (5.57) 

and, hence, Mzz ^^'^ = ^^■ Thus, if Z is a kernel for QC,Y) and z^^ <x^ <xT^, then we are 
guaranteed that 

WZY El [Mzz E x^ )=y^. (5.58) 

Therefore, an eroded version x'^ of x^ satisfying the inequality z^ <T' will be correctly 

associated with the pattern y"^. Since Mzz is very robust in the presence of dilative noise, it is 

not unreasonable to expect that a distorted version x'^ of x"^ containing both dilative and erosive 

noise while satisfying the inequality z"^ < x"^ will be correctly associated with the pattem yl'. 
This expectation tums out to be true and the next theorem provides conditions that guarantee 
perfect recall for corrupted input patterns x^. 
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Theorem 7.   If Z is a kernel for (X,Y) and x^ denotes a distorted version of x^ such that 

z^j<Xj'ij = \,"-,n and z'j=Xj whenever mzz(i,j) = zj-z'j, then M^z Q x''^ = z*^. 

In this theorem, mzAij) denotes the if^ entry of the matrix Mzz- The theorem also shows 

that any corrupted version x"^ of x"^ which contains both dilative and erosive noise but satisfies 

the hypothesis will be correctly associated with the pattern y"^ when fed into the system 

{input -4 Mzz "^ ^ZY -^ output}. 

Bommmm 

I J 

• * 
m 

It t 1 
I *   * 

i 

*       • *, p 4 
i 

• mm 

Figure 5.7: An example of kernel images. The kernel image corresponding to a 
particular letter image is the image directly below the letter image. 

Theorems 6 and 7 can be viewed as a guide for selecting kernel vectors. A first step is to 

erode the patterns x^, saving only a few unique pattern values in order to construct a kernel 

vector z^ such that Z^AX'^=0 whenever y?^^. This may not always be possible. However, 
when it is possible, it provides unique identification markers for the memory Mzz and the 
conditions stated in Definition 2 are automatically satisfied. In general, however, such unique 
features may not exist for some index ^. In this case, once an initial set of kernel ■cctor 
candidates has been selected, the two conditions of Definition 2 need to be checked in order to 
ensure correct recall. 

57 



STTR Army02-T004   Topic Title: Analysis and Characterization of Pattern Classifier^ 
GASP - Generator for Adaptive Statistical Pattern Recognition Systems     January 31, 2003 

We employed this method for obtaining kernel vectors x^ and corresponding weight 
matrices Mzz and Wzx for the ten patterns shown in Figure 5.3. The corresponding kernel images 
are shown in Figure 5.7. The autoassociative memory {input-^M^z-^Wzy-^output} 
obtained from this set of kernel vectors proved to be extremely roust, recognizing all patterns 
even after each pattern was corrupted by randomly reversing each bit with a probability of 0.15. 
Figures 5.8 and 5.9 represent a samplmg of our inputs to the net and the corresponding outputs. 

Figure 5.8. An example of the behavior of the memory {input -^Mzz -> ^ZY "^ output}, 
which was trained using the ten exemplars shown in Figure 5.3. Presenting the memory 
with the corrupted patterns of the letters A, B, and X resulted in perfect recall (lower row). 
Each letter was corrupted by randomly reversing each bit with a probability of 0.15. 

An additional benefit of using kernel patterns is the increase in storage capacity for 
associations Q[,Y).   This is due to the fact that Mzz I a perfect recall memory for any finite 

number of pattern vectors z^ and because of the sparseness of eroded patterns (i.e., m the 
Boolean case most pattern values will be zero), the storage capacity of WZY can be greatly 
increased. 
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c  E e 
Figure 5.9. Another example of the behavior of the memory 
{input —> Mzz —> WzY -> output). Presenting the memory with the corrupted 

patterns of the letters c, E, and e resulted in perfect recall (lower row). Again, 
each letter was corrupted by randomly reversing each bit with a probability of 
0.15. 

5.4. Comparison with Previous Worlt 
In recent years, lattice-based matrix operations have found widespread applications in the 

engineering sciences. In these applications, the usual matrix operations of addition and 
multipHcation are replaced by corresponding lattice operations. Lattice induced matrix 
operatbns lead to an entirely different perspective of a class of nonlinear transformations. These 
ideas were applied by Shimbel [Shi54] to conununications networks, and to machine scheduling 
by Cuninghame-Green [Cun60,62] and Giffler [Gif60]. Others have discussed their usefulness 
in applications featuring shortest-path problems in graphs [Bac75,Ben68,Car71,Pet67]. 
Additional examples are given in [Cun79], primarily in the field of operations research. 

The concept of morphological networks grew out of the theory of image algebra 
[Rit01,RitMS.Rit91,Rit90a]. It was shown that a subalgebra of image algebra includes the 
mathematical formulations of currently popular neural network models [Rit89,Rit91] and first 
attempts in formulating useful morphological neural networks appeared in [Rit90b] and [Dav90]. 
Applications to image processing were first developed by Ritter and Davidson [Rit90b,Dav89]. 
Davidson employed morphological neural networks to solve template identification and target 
classification problems [Dav92b,93a-c]. C.P. Suarez-Araujo applied morphological neural nets 
to compute homothetic auditory and visual invariances [Sua92,97]. Another interesting network 
consisting of a morphological net and a classical feedforward network used for feature extraction 
and classification was designed by Paul Gader and his colleagues [Gad94,Won95]. These 
researchers devised multilayer morphological neural nets for very specialized apphcations. A 
more comprehensive and rigorous basis for computing with MNNs appeared in [Rit96] where it 
was shown that morphological neural nets are capable of solving any conventional computational 
problem. Ritter, Sussner, and Diaz-de-Leon [Rit98] investigated morphological associative 
memories, a class of networks not previously discussed in detail. 
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An entirely different model of a morphological network was presented in [Wil89].   This 
particular model employs the customary operations of multipUcation and summation at each 
node, which is fundamentally different from the models described herein. 
5.5. Applications and Future Worlc 

We have developed a new framework of neural network computing based on lattice algebra. 
The resulting morphological neural networks are radically different in behavior than traditional 
artificial neural network models. The main emphasis of this paper was on morphological 
associative memories. In contrast to traditional associative memories, morphological associative 
memories converge in one step! Thus, convergence problems do not exist. Morphological 
analogues to the Hopfield net not only proved to be far more robust in the presence of noise, but 
also have unlimited storage capacity for perfect inputs. For noisy inputs and carefully chosen 
kernels, morphological autoassociative memories again exhibit superior performance in both 
recall and storage. In our experiment, the autoassociative morphological memory 
{input -» Mzz -> ^ZY ~^ output} was capable of recalling 62 grid patterns defmed on grids of 
size 21x21 pixels. These patterns represent the entire English alphabet of upper- and lower-case 
letters together with integer digits ranging from 0 to 9. Corruption of these patterns by randomly 
reversing each bit with a probability of 0.08 and presenting these corrupted patterns to the 
memory also resulted in perfect recall. 

It should be emphasized that the results presented herein represent only a fu-st step in the 
exploration of morphological neural networks. The lattice algebraic approach to neural network 
theory is new and a multitude of open questions await exploration. For example, we noted that 
the selection of kernel patterns merits fiirther investigation. This is especially true when using 
gray-valued patterns. Selection of proper sets of kernel vectors for Boolean patterns is usually 
easy, while the selection of proper sets for gray-valued kernel patterns can be difficult. To obtain 
a better understandmg of this difficulty, we challenge the reader to find a proper set of kernel 
vectors for the set of vector pans defined in Example 1. Of course, this represents only a small 
part of the overall challenge. Leaming rules for both associative morphological memories and 
morphological perceptrons are under development, but need to be further investigated. The base 
of applications needs to be expanded and further compared to traditional methods. Dr. Ritter and 
his students are currently mvestigating the use of smgle neurons for computation, including 
applications in target recognition. Early resxilts have shown that morphological models for single 
neurons with dendritic computation can be employed in target classification (e.g., landmine 
detection applications) with very high probability of detection and low false alarm rate. 

In a larger sense, MNN models are connected with the fundamental question concerning the 
difference between biological neural networks and artificial neural networks, namely. 

Is the strength of the electric potential of a signal traveling along an axon the result of a 
multiplicative process, and does the mechanism of a neuron's postsynaptic membrane 
add the various potentials of electrical impulses, or is the strength of the electric 
potential an additive process and does the postsynaptic membrane only accept signals of 
a certain maximum strength? 

A positive answer to the latter query would provide a strong biological basis for morphological 
neural networks.  In Section 6, we discuss the application of MNNs to processing of the TNE 
agreement map. 
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6. Combination of MNNs and TNE in Classify-Before-Detect ATR 
In this STTR, we established two distinct approaches to target classification using 

morphological neural networks to refine classifier output. Section 6.1 describes how MNNs can 
be employed in reconfiguration of the TNE agreement map (AM). Section 6.2 describes the 
application of Dr. Ritter's current research in feedforward MNNs and dendritic computation, and 
how these techniques can be used to enhance AM processing. 

6.1. AM Processing with MNNs 
Consider a signal vector v^'^, which denotes output of a sensor s at time t, which is of form 

v^«=(vf«,vf,...,v;«,...,vf)f, (6.1) 

where T denotes transpose and v^^^ e N, with N denoting the set of positive integers. For each 

/= 1, ..., n, the f^ component v/^'^ of V^^'^ references a particular row of the TNE binary 

pointer table entry corresponding to the value vp^'. The AM table corresponding to v*^'^ is a 
new table consistmg of « binary rows, where the i"^ row consists of the TNE binary pointer table 

entry corresponding to vp^K   Figure 6.1 illustrates the construction of the AM for v*^'\ Let 

w*''^'' denote the AM for v*^'^. Then, w''^'^ can be viewed as a vector, where w/^'^ denotes 

the f^ element of this vector, which is the f^ row of w*^^^.   Alternatively,   w*-^'^ can be 
expressed as the integer value that corresponds to a binary representation of the f^ row of the 
AM. 

TNE Binary Pointer Table 

^i 
s{t) 

AO 

100101101110100100000110 

001001010111110100100101 

TNE Agreement Map for v'^^'^ 
1 001001010111110100100101 

100101101110100100000110 

Figure 6.1. Schematic diagram of how the TNE agreement map for \^^^^ is 
obtainedfrom the TNE binary pointer table. 

Suppose an ATR classification problem has k target classes.   Then, it is possible to tram a 

morphological perceptron using a training set   |w^'^,c^):^ = l,....w|, where c^ e l,....k and 

w*'^ belongs to class je {[,..., k} if and only if c^=j. As shown in [Rit98], training is very 

fast and the training set will always be correctly classified. After we do this training for each 
sensor 5 = 1, ..., M, the morphological perceptron will assign each test vector obtained fi-om 
actual observation to a particular target class.    For a suite of M sensors, the perceptron 

64 



STTR Army02-T004  Topic Title: Analysis and Characterization of Pattern Classifier^ 
GASP - Generator for Adaptive Statistical Pattern Recognition Systems     January 31, 2003 

classification produces an Mx K target classification table, whose column sums will yield the 
most likely target. More precisely, if 

m 
kj = i xi^ > ki (6.2) 

for every 1= I, ..., k, t^ j, then the target belongs to class /. Here, xi   = 1 if W;     has been 
j 

classified by the morphological perceptron as belonging to class j, else Xi. = 0.   Figure 6.2 

illustrates this process. 
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Figure 6.2. AM assignment to a target class by the morphological perceptron technique. 

6.2. Dendritic Computation for Processing Significant AM Information 
The schematic diagram of the processing sequence shown in Figure 6.3 illustrates the sunple 

scheme of summing across components on an AM and/or across (over time) multiple AMs. 
Obviously, summing across components may help identify a possible target, but often provides 
only partial and sometimes conflicting information as it does not account for contiguous values 
of ones. For example, given a vector x = (xi, xi,..., ;cio) obtained fom a row of a TNE AM, 
where xi = ^4 = :c8 = xio = 1 and xi = 0 for / ^ 1,4,8,10, then iji^xi = 4. However, it may be 
statistically more significant to know if the value 4 thus obtamed represents contiguous ones. 
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Test Vector Xi        Test Vector Xm 
Vector Com- 

ponent 

M successive observ- 
ations, e.g., from m views 

or sensors 

Sum along each 
component across 
AMs -^ Fusion 

Sum across compon- 
ents on one or more 
AMs -> Density 

Figure 6.3: Schematic diagram of AM processing using component summation: We are free to 
operation on the 3D binary AM (a) along exemplar components in single or multiple 
agreement maps, or (b) by component(s) across multiple agreement maps. Thus, MNNs 
can access the agreement map space in multiple ways, to increase versatility and 
robustness, while at the same time (i) computing target density per test vector by 
summing across components, and (ii) fiising multiple inputs expressed as multiple 
agreement maps, by summing along each component 

To obtain this type of inforaiation from a collection of AMs, we can employ a simple 
feedforward morphological neural network that needs no training. For the above example with 

x = (1,0,0,1, 0,0,0,1,0,1) 
the output of our feedforward MNN would be 

y = (1,0, 0,1, 0,0, 0,1,0,1). 
However, if 

x = (0,1,1,1,1,0, 0,0,1,0) 
the output of the MNN would then be 

y = (0,4,1,1,1,0, 0,0,1,0). 
In the latter case, we obtain two types of information: 

1-   S|=i Xi = 5, which tells us that there are five positive responses, and 

2.   Vj._jX,- = 4, which indicates that among the five positive responses, four are contiguous. 
This type of feedforward network with both excitatory and inhibitory neurons has been described 
in [Rit02]. To provide a partial example and illuminate the concept underlying the network, we 
consider a simple case, where x = {x\, JC2, x{). Figure 6.4 schematically illustrates this network 
and provides all the axonal branches terminating on output neuron yi. The inhibitory neurons are 
denoted by z,-. The activation fiinction for the inhibitory neurons is defined by 

^^ ^    [0   ifz>0 
/(^)= ..    ^r,- (6.3) po    II z <0 
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Figure 6.4. Simple example of AM processing network for three-input test vector x = 
(xi, X2, xs), showing the axonal branches and dendritic tree for output neuron yi only. 
The neurons labeled zi and Z2 are inhibitory neurons. The dashed lines are intended 
only to distinguish axons associated with X2 and ^ from those associated with other 
neurons. 

The input neurons have no activation fiinction, but simply send their values down their axons and 
subordinate axonal branches. The output neurons also have no activation functions as we want 
to read the total computed value. The computation of the f^ output neuron is given by the 
following formula: 

k=\ * 
(6.4) 

where Xj((x) denotes the computed value of the k^ dendrite of output neuron y and Dj denotes 

the total number of dendrites of output neuron7. The value of t^ (x) is given by 

isl{k) isJ(k) 

where x,- denotes the value of the i"* input neuron, 
Zi denotes the value of the ?'^ mhibitoiy neuron, 
I(k) denotes the set of input neurons having terminal branches on the k^ dendrite of 

output neuron7, 
J(k) denotes the set of inhibitory neurons having terminal branches on the k^ dendrite of 

output neuron7, 
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Wijk denotes the axonal branch weight of the f^ input neuron terminating on the k^ 
dendrite of output neuron 7, and 

Vijk denotes the axonal branch weight of the f^ inhibitory neuron terminating on the k^ 
dendrite of output neuron7. 

Thus, to compute the value of x = (xi,X2, JC3) = (1,1, 0), we have 

3 
71 = Vx[(x) = xl(x)v4(x)vT^(x) 

= (1 + 0)V[(1+1)A-(0-2)A-(0-2)]V[(0 + 2)A-(0-3)A-(0-3)] 

= 2 
Similarly for x = (1, 1, 1) we obtam yi = 3, while for x = (1, 0, xz) and x = (0, xi, X3) we 
respectively obtain yi = 1 and yi = 0, where X2 and x^ can have the value 0 or 1. 

6.3. Implementational Advantages of AM Processing with MNNs 
Due to the potential size of the agreement map, processing of the AM can be potentially 

burdensome. We have elsewhere shown that it is possible to process the TNE agreement map 
with Boolean operations implemented in a parallel or reconfigurable processor [Key99] or 
network of processors. However, MNNs present the advantage of a fundamental increase in 
processing efficiency for performing contiguity detection simultaneously with target 
classification in O(log n) time. This concurrency annot be reaUzed in traditional vector 
processing techniques without prohibitive replication of hardware. Analysis and several 
examples in support of these claims follow. 

As before, assume that we have « vector components, m sensors, and k targets possible. The 
agreement map shown schematically in Figure 6.5 thus has kmn elements, each of which is 
shown I that particular example as one bit. Thus, any operation that processes all locations m the 
agreement map at least once (as exemplified in Figure 3 by the bold arrows indicating 
summation) will incur work W = 0(kmn). Since k can be quite large (e.g., 10^ to 10^ in 
practice), and m is typically much smaller (e.g., 1 to 100), the efficiency of TNE's AM 
processing algorithni(s) depend(s) on making n as small as possible without losing source 
resolution by introducmg excessive sampling error [Key99]. Assuming that 16 < n < 256 is 
usual, we have 1.6 x lO'* < kmn < 2.56 x 10^°, a range of over two orders of magnitude. 

However, as discussed in Section 5, MNNs can process input m one pass of the network. 
However, in the example given in Section 6.2, Equation (6.5) requires n^ partial nunima to be 
computed. Fortunately, this can be computed on a tree-structured architecture, leading to 0(log 
n^) = 0(log n) time complexity and 0(«) space complexity, smce the processing elements fi-om 
stage / can be recycled in the computation of stage 0+1) if double buffering is employed. This 
concept is illustrated notionally in Figure 6.5. 

In particular, the number of processing operations required to compute Equation (6.4), shown 
in the upper part of Figure 5.5a for « = 4, and Equation (6.5), is given for each yj by 

W(^) = 3 + \I(k)-l\ + \J(k) - 1| comparison operations + \I{k)\ + \Jik)\ additions. 
This implies that a tree-structured architecture could compute Equation (6.4) in O(log\l{k)\ + 
log|/(^)|) addition operations, since comparison is typically unplemented with subtraction, which 
is implemented m terms of addition. 
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Each leaf is an instance of the term 

Tj^(x), given in Equation (6.5), as 

Stage 
j-1 

Shift 

Stage 

I    Output Buffer     | 

Pi P2 
ft 

P« 

1 T 
I     Input Buffer       | 

J L 

T^(X)=     A    (Xi+Wijk)    A     [Zi+Vyk) 

(a) (b) 

Figure 6.5:    Computation of MNN result with a parallel tree-structured architecture: (a) 
diagram of partial minima and global maximum computation for n = 8, (b) double 
buffering used to recycle processors for multi-stage hierarchical pipelining of MNN 
computation. Observe that, in a tree-structured architecture, processor P„ could be 
used in Stage i but not in Stage i -1. 
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7.0 Conclusions and Future Work 
Research at FTI and UF on Phase-I of the GASP project focused on establishing the 

theoretical and practical basis for MNN-based processing of multiple TNE agreement maps. 
Emerging technologies such as Morphological Neural Nets and Dendritic Computing with 
MNNs were integrated into the research results. All tasks in the SOW were addressed, as shown 
in Section 1. In this section, v^e summarize our Phase-I findings, then discuss future work for a 
possible Phase-II research and development effort. 

7.1. Research Findings 
The combination of disparate classifier outputs is fraught with difficulty, primarily due to 

differing sensor parameters (e.g., a spectral detection process versus a time-of-flight based 
detection) and data quality (e.g., high computational error corrupting one classifier output, while 
another classifier is sensitive to image detector noise propagated through one or more of the 
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aforementioned postprocessing computations). Various techniques such as linear or nonlinear 
combination, Bayesian or unsupervised classification, and supervised learning techniques such as 
neural networks have been proposed for refining the output of individual classifiers or combining 
such outputs to produce a more accurate classification. 

Accordingly, we have investigated Bayesian classifiers (Section 3), Frontier Technology's 
TNE pattern recognition paradigm (Section 4), and UF's Morphological Neural Networks 
(MNNs) pattern recognition paradigm (Section 5) for both classifier and post-classifier 
processing, as described in Section 2. Furthermore, we have investigated and formulated 
approaches for processmg the TNE agreement maps using MNNs Section 6). The latter 
techniques represent potentially important new developments in pattern recognition, which 
promise greater accuracy and information storage capacity, as well as improved refinement of 
classified sensor output. 

We have found that nonadaptive Bayesian classifiers, especially in a fixed, rule-based pattern 
recognition paradigm, lack sufficient flexibility to track input changes (e.g., nonstationarities) in 
a manner that preserves or increases Pd and minimizes or decreases Rfa. Several additional 
problems with classical Bayesian pattern recognition theory include the unrealistic requirement 
that all probabilities be known and accurately computed prior to classification. This stipulation 
can only be satisfied with full model-based covera^ of tiie input pattern space, which has been 
fi-equently shown to be infeasible in ATR field practice. It is well known that model-based ATR 
often leads to brittle classifiers that incompletely cover input space because they are designed to 
account for knovm instances of input pattems. However, the interesting phenomena in ATR 
field practice are usually those of which one has little or no foreknowledge. It is these 
unforeseen effects that typically render a target classifier brittle or failed in practice. 

An alternative to pure Bayesian classifiers is FTI's TNE pattern recognition paradigm, which 
is grounded in Bayesian pattern recognition theory at a high level, but allows for uncertainty in 
the pattern space, noise or partial information in test vector input, and can combine classifier 
results in a data fusion paradigm. Another alternative is neural network based pattern 
classification, which can be rendered adaptive via a learning algorithm. Dr. Ritter has developed 
Morphological Neural Nets (MNNs) as highly accurate, efficient classifiers that are designed to 
replace classical neural networks in a wide variety of signal and image processing applications. 
MNNs have the advantages of theoretical maximum information storage capacity, fast and 
accurate convergence (usually in one pass of the net), and short training times. Additionally, 
theory that predicts the performance of MNNs imder partial information or noise has been 
published in the literature and summarized in this report. 

In this Phase-I research effort, we examined how MNNs could be applied to processing of 
the TNE agreement map to further increase classification accuracy. If one views TNE's target 
database, distance function, and thresholding parameter(s) as a priori knowledge, then one can 
think of the columns of TNE's agreement map as the partial classifier results. We have shown 
how MNNs could be applied to these columnar partitions to (a) render partial classification more 
robust, (b) combine results from adjacent columns to increase the likelihood of accurate target 
classification in the classify-before-detect ATR paradigm, and (c) direct further statistical 
processing or optimization of MNN/TNE results. 

In Section 4, Section 5, and Appendix A, we discuss two advanced technical issues, namely 
(1) the use of array processors to compute the TNE or MNN algorithms, and (2) the use of 
pointwise versus componentwise performance measures of Pd and Rfa to trigger MNN 
processing of the agreement map.  Since TNE and MNNs are based on matrix operations (e.g.. 
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vector correlation and pointwise bitmap operations in TNE, with nonlinear vector-matrix 
products in MNNs), it is possible to parallelize these operations for computation on embedded 
SIMD array processors or reconfigurable computers such as field progranmiable gate arrays 
(FPGAs). We showed that, for a target database comprised of M exemplars, classification of N 
samples of K pixels each could be computed in W = 0(KMN) work. In practice, since the bits 
that comprise the agreement map can be operated upon in parallel fashion (e.g., Boolean vector 
processing), it is possible for W to have a small proportionality constant. We also showed that 
MNNs could compute in 0(N(logK + logM)) time, given sufficient parallelism and I/O 
bandwidth. 

7.2. Future Work 

Because of our concerns pertaining to classifier performance in the presence of nonstationary 
input, we propose follow-on research (e.g., Phase-2 of the current STTR) to develop adaptive 
pattern recognition capabilities for TNE that would be directed by classification performance 
results. We propose to achieve this objective via the following innovations: 

1. MNN-directed TNE target database optimization - It is well known that template-based 
pattern recognition systems perform more efficiently given a smaller number of target 
templates. Consider the problem of detecting multiple rotated versions of the same target. 
Although it may be difficult to analytically determine the optimal rotation angle quantization 
level, this can be done empirically by (a) merging similar target templates, then (b) 
constructing a Receiver Operating Characteristic (ROC) curve fi-om Pd and Rfa analysis of 
TNE classifier output obtained from ATR imagery. When Pd and Rfa begin to underperform 
with respect to specifications, then it can be argued that the optunal quantization level has 
been exceeded. However, this tells us notfiing about the imderlying merging process inherent 
in target template combination, and its effect on TNE classifier performance. Neither does 
this assumptbn consider cosine or tangent projection laws that cause adjacent views in out- 
of-plane rotations near 45 degrees to appear significantly different visually, as opposed to 
out-of-plane rotations near zero degrees, which appear ahnost identical. Apparently, a 
nonlinear rotation angle quantization scheme would be needed to compensate for such 
projection effects. 
Proposed Work. In Phase-II, we propose to mvestigate the concept of adaptive quantization 
using MNNs to cluster rotated targets according to the expected viewpoint. This approach, 
which we call viewer-adaptive training set optimization, would allow the mter-view spacing 
(e.g., angular quantization step size) to be varied as a ftmction of out-of-plane rotation angle 
as well as performance variables such as Pd or Rfa. Thus, we would more closely approach 
optimization of the target database from a physical (i.e., viewer-dependent) or mathematical 
(e.g., ATR filter sensitivity) perspective. Additionally, we propose to explore the effect of 
noise and contrast degradation (e.g., effects of intensified imaging in night viewing 
apphcations) on angular quantization levels, agaui from a performance perspective grounded 
in Pd and Rfa based metrics. 

2. Performance directed target database and AM processing optimization - As noted in Item 
1), above, when Pd and Rfa no longer meet performance specifications, one should be able to 
employ automatic re-optimization of the TNE template database, as well as apply MNN- 
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assisted TNE agreement map processing, as investigated in Phase-1. For example, if a small 
angular quantization interval is selected for rotated targets, this might be increased for night 
viewing, due to the effects of image intensifier noise on (a) image resolution and (b) resultant 
TNE correlation performance between a test vector and each pattern in the template database. 
We note that there are many other parameters, in addition to angular resolution, that can 
serve as bases for determining whether or not to cluster targets in the TNE database. These 
should also be investigated, as described below. 
Proposed Work. In Phase-II, we propose to investigate (a) parameters that could be used to 
direct template clustering in the TNE database, as well as (b) theory and algorithms for 
relating TNE database structure to TNE performance in terms of Pd and Rfa. Example 
parameters include but are not limited to camera noise, measures of input nonstationarity, 
target/background contrast and target rotation/scaling effects. Although there has been some 
investigation of these effects for TNE-based compression, additional research is required to 
transfer these technology developments and insights to the less constrained application 
domain of target recognition. Additionally, we propose to investigate how MNNs could be 
used to cluster TNE templates based on well-estabUshed similarity or content metrics 
published in the literature. 

3. MNN-assisted TNE classifier refinement - Given results produced in the Phase-1 
investigation, it is readily apparent that MNNs have considerable present and future utility in 
TNE agreement map processing. At the present time, MNNs can determine saliency of 
partial classification results (e.g., columns in the TNE agreement map) or can be configured 
to operate on the agreement map to combine columns in a data fusion paradigm. We would 
also note that it is possible to process the agreement map using statistical procedures such as 
Analysis of Variance (ANOVA) to determine diagonal orientations of detections within 
columns of the agreement map, which can indicate phase shifts among similar targets or 
target types. We thus propose the following work items for a possible Phase-II study. 
Proposed Work. In Phase-II, we propose to extend the research performed in Phase-I, 
wherein we investigated the feasibility of applying MNNs to process the TNE agreement 
map. In particular, we propose to investigate techniques for interrogating the agreement map 
while employing other than rowwise or columnwise partitions. In Phase-I, we foimd that 
interrogation of AM rows, or spatially clustered groups of rows, supported preliminary 
selection of possible targets that were classified and detected within those spatial partitions. 
This information could be used to downselect additional target templates for multi-pass 
recognition, or to select strategies for measuring or analyzmg Pd or Rfa within TNE 
sampling partitions. In the latter case, this would partly support sub-block detection (e.g., for 
small features or targets) under Pd and Rfa constraints or metrics that are customized for the 
expected target types. Additionally, in Phase-1, we found that columnwise processing with 
MNNs could implement data fusion through combination of partial classification results 
specific to similar target instances or types. 

In Phase-II, we propose to extend these research resuhs to search for other types of 
detection pattems within an agreement map. This could be done by a spatially based 
ANOVA to detect, for example, diagonal pattems indicative of phase shifts. As an 
illustration of this concept, consider the situation where the cannon or turret of a tank is 
detected in a digital image. However, this turret might be in a slightly different position in 
different tank templates, due to lack of template co-registration as well as scale or rotation 
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differences. Rather than scanning the AM row-wise, it would be useful to detect whether 
there were phase shifls within a group of content-related templates (e.g., similar tank types 
with similar out-of-plane angular rotations). In practice, this approach would be useful for 
refining the classification result to achieve more accurate target identification. 

The result of the proposed future work would be an adaptive and more highly refined target 
or pattern classification paradigm. In this envisioned GASP system, which we outlined in the 
Phase-1 proposal, ATR imagery would be processed by TNE's sampling module and appHed to 
the TNE engine to yield an agreement map. The TNE engine would employ a target template 
database that would be optimized as described previously, to adapt to changing input conditions 
according to Pd and Rfa results. MNNs would process the TNE agreement map, as described in 
item 3), above, and these MNNs would also be constrained by Pd and Rfa. If time and resources 
permit, it could be useful to investigate MNN-directed adaptation of TNE for target classification 
in variable-noise scenarios typical of intensified cameras (e.g., night vision appHcations). 

The proposed research would produce a powerful fusion of neural nets and TNE to yield 
adaptive classification compensated for physical effects such as noise that manifest in the pattern 
space. This represents a new direction in pattem recognition with potentially high payoffs in a 
wide variety of military and domestic applications. 

Appendix A: Advanced Technology Summary 
Several technology areas-of-need have been highlighted in this Phase-1 study. The two most 

prominent areas are (1) embedded parallel or reconfigurable processor technology to support 
TNE computation (discussed in Section B.l) and (2) the use of pointwise versus componentwise 
measures of Pd or Rfa to trigger MNN-based codebook optimization or MNN-directed 
processing of the TNE agreement map (discussed in Section B.2). 
B.l. Embedded Parallel Computation of TNE 

This section contams a high-level design and summary analysis for an ATR architecture 
based on (a) the tabular nearest-neighbor (TNE) pattem recognition paradigm, (b) one or more 
reconfigurable processors, and (c) a scalable multi-port I/O system. In particular, the proposed 
architecture is based on a common bus that is designed to facilitate switching of binary input 
(two operands) to selected reconfigurable computer (RC) units. The processing units are 
designed to be reconfigurable to support different operations over the agreement map (AM), a 
data structure key to the implementation of TNE. Since the key challenge of implementing TNE 
on RCs is the I/O overhead associated with retrieval of the agreement map rows, followed by 
column operations over the agreement map, we first emphasize I/O cost. This approach is 
germane due to low computational cost - in practice, addition and Boolean logic operations only 
are required. Performance estimates presented herein are highly conservative, and would be 
increased considerably by more advanced parallel or reconfigurable processing technology that 
will likely be available at the time of possible prototype construction. 
B.1.1. Introduction to Parallel Reconfigurable Processor Design Issues: Frontier 
Technology's TNE pattem recognition paradigm requires retrieval of bit vectors fi-om memory 
containing preprocessed templates (PTM). Each bit vector comprises a row of an intermediate 
data structure called an agreement map, which changes with each position of a source image 
sampling window. In this context, a system designer's first concern should be the I/O operations 
required to move information in and out of the agreement map. A second design issue, which is 

73 



STTR Army02-T004  Topic Title: Analysis and Characterization of Pattern Classifier^ 
GASP - Generator for Adaptive Statistical Pattern Recognition Systems     January 31, 2003 

no less important, is how to efficieitly retrieve AM data from the PTM and transfer it into an RC 
processor, such that the processor can operate on the AM data efficiently. Additional design 
issues include, but are not limited to, minimization of the degree of parallelism, degree of 
memory port replication, and complexity of the RC processing circuitry. 
B.1.1.1. Assumption. Given (a) K pixels per sampling window or block applied at selected 
domain points of an N-pixel soiu-ce image, (b) a maximum of K pixel shifts per block, and (c) K 
bit vectors retrieved from memory comprised of L bits per row vector, the following minimum 
I/O work is required for AM access, during processing of a source image sequence comprised of 
F frames per second (Q)s) with R replicates per frame: 

Wi/o < KNLFR bits/sec (bps). (B.l) 
Under the prespecified constraints, Wi/o describes the approximate number of I/O operations 
required to move the AM data only. Note that Wi/o does not mclude I/O overhead required for 
RC reconfiguration or for moving source data or processed output (results) into buffer memory. 
B.1.1.2. Example. If K = 256 pixels, N = IM pixel, L = 15,000 templates, F = 1 fps, and R = 1, 
then KNLFT = 4.02 terabits per second (Tb/s). At video rates (F = 30^s), this product increases 
to 120 Tb/s. This is clearly a problematic data rate for architectures based on relatively slow I/O 
bus technology, such as field-programmable gate arrays (FPGAs). 
B.1.1.3. Observation. The work requirement shown in Equation (B.l) can be ameliorated by 
subsampling each (a) source block (sampling window) at a fraction £ of K pixel shifts, (b) 
image at a fraction fi of N possible source block positions, (c) AM at a fraction £ of its L 
columns, and (d) image sequence at fractions f of frame rate F and fr of R frame rephcates. The 
work requirement can thus be expressed as 

Wi;o >rfK • K)('fN • N)rfL • L)rfF • Wf^^ • R) bits/sec (bps), (B.2) 
which can be rendered tractable to current memory, bus, and RC technology if the factor 

is kept sufficiently small. 
B.1.1.4. Example. Given the values K = 256 pixels, N = IM pixels, L = 15,000 templates, F = 1 
fjps, and R = 1, let fj = 0.1 (e.g., 10 percent of soiu-ce points underlie a pixel value deemed to be 
part of an interesting candidate target). Further let & = 0.5 (i.e., half of the pixels in the 
sampling window are randomly selected), and let t = 0.1 (i.e., there exists a tenfold reduction in 
AM size, for example via a hierarchical access scheme). Given j|,fR = 1, Wi/o is computed from 
Equation (B.2) as: 

W^o ^ (0-5 • 256)(0.1 • 1M)(0.1 • 15,000) bps = 20.13 Gbps . 
For example, this estimate of I/O might be feasible using high-bandwidth multiport I/O and 

parallel processing technology, as discussed below. 
B.1.1.5. Observation. Observation B.1.1.3 implies that several design strategies could be 
concurrently employed to mitigate the I/O cost in the presence of relatively low FPGA clock 
speed supported by current technology (e.g., 200 MHz to 500MHz). A common remedy for this 
situation is I/O parallelism. In a practical parallel processing scenario, I/O cost could be shared 
among P processors, each of which could have M I/O ports. In that case, the maximum 
reduction in I/O cost would be expressed as the product PM. 

Another technique that appears to be applicable to TNE is hierarchical partitioning of the 
AM domain, in particular, the column coordinate. For example, one could group a nonzero 
fraction i of L templates specific to a given target T to yield LH =fL • Lhigh-level templates. 
Each of these high-level templates could be associated with a lower-level partition of template 
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space, of mean size L/LH templates. The best-match score at a high level would point to the 
most likely partition to be searched at a lower level. This strategy, which FTI personnel have 
indicated is feasible in practice, would reduce Wi/o by an average amount 1. 

A third method that may help reduce AM I/O cost is pipelining of AM I/O, which could be 
achieved by dividing the AM into n-column partitions of Kn pixels each, where n « Q. This 
could facilitate processing of the AM on a network of P RCs, each having storage capacity of Kn 
bits. Following a brief, high-level description of the proposed architecture, each of the preceding 
methods is subjected to summary analysis. 
B.1.2. Proposed Prototype Architecture. Let P processors denoted by Pi, P2,..., Pp having 
local memories Mi, M2, ..., Mt be connected by a common bus comprised of two mbit input 
buses Bi, B2 and one 2m-bit output bus B3, as shown in Figure B.l. 
B.1.2.1. Data Bus and Control. Let each processor have input (output) switched from (to) the 
common bus by mpole (2m-pole) single-throw normally-open switches. For example, if Pi 
accepts input from Bi orBz, then input switches Si,i or 81,2 would be cbsed, allowing data to flow 
to Pi. (The output switch for the i-th processor is denoted by 81,3.) Each of the three banks of 
switches could be controlled by a separate control bus of maximum width [log P] bits, denoted 
byCi,C2,orC3. 
Alternatively, the aforementioned switches could be controlled by a single bus of width [log3P] 
bits. Although such multiplexing might save bus space, the presence of demultiplexing hardware 
is implied, which could increase circuit complexity, power consumption, and (possibly) I/O time. 

B = Data Bus     C = Control Bus 

Figure B.L Schematic diagram of common-bus architecture for RC based processing ofTNE 
ATR operations, where Pi denotes the i-th processor, Si,i, Stj (Su) denote the input 
(output) switches specific to P, MMU denotes a memory management unit, and M 
denotes Pi's local memory. 

B.1.2.2. Features and Advantages: The common bus would allow a partition of data to be 
broadcast to multiple processors, e.g., a K-pixel sampling block in TNE, or template/parameters 
required by non-TNE paradigms such as Boolean template matching or MISD-parallel 
processing of multiple ATR filters applied to a given input. The switches would allow different 
processors to receive specific data partitions or (m the case of TNE) MMU instructions that 
could facilitate retrieval of AM data from local memory.    The latter operation could be 
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implemented via bypassing the FPGA with a separate control bus derived from Bi or B2, as 
shown in Figure B.l. 
B.1.2.3. TNE Processing Elements: In practice, TNE produces in each column of the agreement 
map a vector of bits, each of which indicate whether or not a vector component matches the 
corresponding value in a template at a particular pixel position and greylevel. The summation of 
the j-th column of the AM indicates at what level the sampling block matches the j-th template. 
This can be thought of as somewhat similar to the Hamming distance that might be computed by 
matching a source block to the j-th template, under a prespecified thresholding criterion. Thus, 
reconfigurable processing elements (PEs) for TNE-based ATR could in principle be relatively 
simple, since each processor could initially compute the sum of each column in a partition of 
AM columns assigned to that processor. This would yield a measure similar to the Hamming 
distance between the current sampling block and each of the templates that correspond to the 
given partition of the AM colxmm. 

Given the Boolean set B = {0,1}, for purposes of architectural development we adopt as our 
example application computing the sum of each column a^ € B'^ of an agreement map denoted 

by a € B '"'^ . The Hamming-like distance that corresponds to a;" can thus be expressed as: 

^H(aO=£a^ . (B.3) 
where the overbar denotes complement. Assuming that K = 2", the equivalent image algebra 
expression 

implies that a modulo-2^ coxmter with inverted input could be employed to compute Da. 
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Figure B.l. Schematic diagram of (a) J-K flip-flop constructed of 10 nand gates, 
and (b) a modulo-2"' counter constructed from m J-K flip-flops. 
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B.1.2.4. Example. In a prototype architecture, it is possible that such counter circuitry could be 
contained within a functional block of each processor Pi. Using existing tools, it would be 
possible to specify such functionality in VHDL code, which could be implemented in 
reconfigurable logic with nand or nor gates, for example, as shown schematically in the mbit 
counter of Figure B.2. Here, 10m (8m) nand (nand + nor) gates are required for a modulo-T^ 
synchronous counter. The input would be inverted to implement the Boolean complement 
operation shown in the preceding equation. 
B. 1.2.5. Space Complexity. Assume that a given PE can be configured without incurring 
performance penalties during execution due to I/O pathlength dictated by the VHDI^to-hardware 
place-and-route algorithm. If Ng nand gates are required per coimter, then one could additionally 
assume an overhead f as a fraction of total gates, for I/O handling (buffering, etc.), thereby 
yielding a total of Ng( 1 +4) gates per modulo-T^ counter. 

For purposes of simplicity, assume that each configurable logic block (CLB) in an FPGA has 
an integral number of counters only, due to limitations on I/O into or out of each CLB. Letting 
each FPGA have H CLBs with Hg gates per block, the maximum number of counters per 
FPGA fully populated with counter circuits would be estimated as 

Solving the preceding equation for Ng yields the following conservative bound on the number of 
gates per counter: 

N. <N. 

N,> 
N. 

N bg 
(B.5) 

(1 + fg)' 
where the ceiling function reflects the previous assumption pertaining to the number of counters 
per CLB. 
B.1.2.6. Example. If ^ = 0.2, K = 256, each counter requires N^ = 8 • logK gates, and an FPGA 
is partitioned into Nb = 1024 (32x32-element array of) functional blocks of Nbg = 100 ^tes each, 
then 

100 N, <1024• =1024 counters 
64(1 + 0.2) 

could be implemented per FPGA, neglecting other on-chip requirements. 
B.1.2.7. Observation.    Each FPGA functional block may require that additional gates be 
allocated to non-computational work such as buffering data routed to and from local memory. 
Until the counters are coded in VHDL, and a detailed schematic is developed, it is not possible to 
know how many additional gates would be required. 
B.1.3. Preliminary Analysis. We begin with an efficiency analysis, then concentrate on I/O and 
computational cost analysis specific to the implementation of TNE/ATR on the architecture of 
Figure B.l. 
B.1.3.1. High-Level Efficiency Analysis. Our Phase-1 research indicates that the key constraint 
on TNE's implementational success is the efficient retrieval of agreement map data from the 
local memory of each processor. Proceeding from the general to the specific in this analysis of 
efficiency and resource consfraints and given an execution time per block in the proposed RC- 
based architecture (operating in non-pipelined mode) of Atg, we note (from Equation B.l) that 
the total execution time per frame is given by 
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At,„. = NFR-AtB, 
where the source frame size is denoted by N, frame rate by F, and repUcation factor by R. 

Lettmg F,R =1 for purposes of simplicity, the total computational bandwidth can be 
expressed as 

BW,„,<—i—. (B.6) 

We next consider the role of I/O in the formulation of Atg. 
B.1.3.1.1. I/O Constraints. Assume that the L columns and K^ rows of the template database 
are partitioned P ways, such that each local memory M contains n = [L/P] columns of the 
agreement map. This implies that the size of Mi is givenby 

|Mi|>K2.|"L/P]bits. (B.7) 

B.1.3.1.1.1. Example.  If K = 256, L = 16K bits, and P < 16, then IMJ > 256^ • IK bits = 8M 

bytes.   If P = 4 (a more reasonable value), then |Mi|>256^ •4Kbits = 32M bytes, which is 
achievable with current technology. 
Assume that the dominant component of Atg is the I/O time required to retrieve AM data from 
local memory. (This assertion is supported by the analysis of Section B.1.3.2.) Letting At,^ 
denote the memory cycle time and Nmp the number of memory read ports, we have the following 
I/0-dominant bound per block: 

Kn-?t^ 
At„ > 22L 

N 
which can be inverted to obtain block-specific bandwidth. Via substitution of the preceding 
equation into Equation (B.6), total bandwidth can be elaborated as 

RW      <—_i__-  "y  
""' " N• ?tB "   (fN-NXfK-KXfL-n)-?t^   ' (B-8) 

where the fractions fj, fe, and f were defined previously. Solving for n, the bound on the 
number of AM columns stored in local memory is given by 

^ ^mp  

(fN-NXfK-KXfL-BWtot)-?t^e^   • ^-^^ 

B.1.3.1.1.2. Example. Letting &, fie, 4 = 1 for purposes of conservative analysis, and assuming 
that N = IM, K = 256, BWtot = 1 Hz, N^ < 4, and At^= lO'* sec (i.e., 10 ns memory cycle 

time), we obtain n < 4/(2^° • 2" • 10"^) = 1.49 bits, which is prohibitively small. 
In contrast, letting i^ = 0.1 (10 percent of the source pixels are interrogated), & = 0.5 (half of 

the block contents are sampled), and At,^ = 8x10'^ sec (8 ns memory cycle time), one obtains n 
= 37 bits, which is insufficiently large to support feasible parallelism. 

However, if L = 16K bits, then this implies that the degree of parallelism (i.e., number of 
processors) P = 16K/37 = 443 processors, which is prohibitive for current FPGA-based 
architectures. To obtain P < 16 at F,R = 1, there must be realized a speedup of 443/16 = 27.6:1 
or greater. 
B.1.3.1.1.3. Observation: A usefiil method for increasing this processing efficiency is the 
hierarchical partitioning of the column coordinate of the agreement map.   For example, if f = 
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0.1, then n can be brought to within a factor of 2.8 (approximately 11) of the value required for 
16-fold (four-fold) parallelism.    Over the duration of the proposed Phase-II project, the 
remaining factor of 2.8 could possibly be compensated by increases in Nmp and At„^ as memory 
technology develops. 
B.1.3.1.1.4. Remark. In practice, a reduction in i could be achieved through a two- or three- 
level scheme, in which similar templates are grouped together via Boolean operations on 
neighborhoods of each row in the agreement map. This would yield a high-level assembly of 
composite templates, where each template would likely have reduced resolution with respect to 
the original templates from which it was derived. 
B.1.3.1.1.5. Example. If a target is imaged at 10 degree rotational increments (azimuth and 
zenith), then grouping of adjacent templates in 30 degree disjoint but adjacent azimuth and 
zenith angle ranges could yield a nine-fold reduction in L (i.e., £ = 0.11). 

We next consider the space requirements of the architecture shown in Figure B.l. 
B.1.3.1.2. Space Complexity. There are several issues to consider when analyzing space 
complexity of the proposed architecture, which include (1) bus size and switching, (2) processor 
size (number of gates), partitioning scheme (e.g., flat-field versus hierarchical), and bus 
structure, as well as (3) local memory size. We overview each of these issues, then make 
recommendations for further analysis. 
B.1.3.1.2.1. Bus Complexity. As shown in Figure B.l, three data and control buses are 
sufficient to compute binary image operations on an RC based processor. In Figure B.l, Si and 
S2 have width m bits, and S5 has width 2m bits. The control buses Ci through C3 each have 
width [log P] bits, for a total bus space complexity of 

^(m, P) = 4m -I- 3 • flog P] bits . 
Note also that buses do not have convoluted shapes, and could thus be straightforwardly 

routed on a mxilti-layer circuit board. 
B.1.3.1.2.2. Example. If source imagery has eight bits per pixel and 16-fold parallelism is 
employed, then m = 32, P = 16, and 5'(m,P) = 32 + 3(4) = 44 bits, which is not prohibitive in 
terms of current board fabrication technology. If P = 8 (P = 4), then 5'(m,P) = 41 bits (38 bits), 
which are less stringent than the first case. 
B.1.3.1.2.3. Processor Size. A key concem for efficient RC-based processing is whether or not 
the RC processing chip set has sufficient gates to implement the required intra-processor 
parallehsm. In Equation (B.4) we expressed the nvimber of counters that could be derived from a 
reconfigurable logic chip of Ng gates. As stated, we expect that approximately one counter per 
CLB could be obtained. This reduces the issue of intra-processor parallehsm to determining the 
number of available CLBs. Let us make a best-case assumption, namely, that all CLBs on-chip 
would be available for counter implementation, and that all counters could be run simultaneously 
(e.g., sufficient I/O redirection to permit efficient transmission of each AM column to each RC 
processor). The feasibility of this assimiption is fiirther explored in Section B.3.3. 

We have stated that an AM partition size of n = IK columns could be accomodated in the 
worst case, that is, in the absence of partitioning of the AM column coordinate (e.g., f = 1). 
This imphes degree of parallehsm of IK counters (e.g., a 32x32-element matrix of sufficiently 
large CLBs on-chip) in order to process all colunms concurrently. Fortunately, such parallelism 
is available with current FPGA technology. The case where £ < 1 would obviously present less 
of an implementational challenge. 
B.1.3.1.2.3. RC Processor Partitioning. The majority of FPGAs or RC chips are configured as 
a flat array of gates, with high-speed communication buses.   The regions of the gate array 
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delimited by the buses are called configurable logic blocks. Each CLB has essentially the same 
bus access priority and can support the same type of circuits as other CLBs. Cross-block 
mapping is not necessarily problematic, except for exotic memory applications. 

In contrast, there exist several hierarchically partitioned FPGA architectures, notably the 
Actel Eclipse, with three levels of partitioning, namely, CLB, functional block (FB), and gate. In 
such devices, a given CLB or FB can be programmed to have different bus access priorities, data 
transfer speed, and gate interconnections, independent of other partitions. As a result, a variety 
of complex circuits are possible, for example, using small partitions of each CLB for address 
incrementation, larger partitions for integer adders, and one or more CLBs for multipliers or 
division circuits. 

Challenges involved in the programming of FPGAs include external I/O, inter-block and 
inter-chip communication, programming hierarchical FPGAs. The issue of external I/O buses 
has been discussed previously with respect to the problem of obtaining AM data stored in local 
memory. Commxmication between CLBs and FPGA chips is supported in various ways by 
different manufacturers and on different chips. Since FPGA technology appears to be in its late 
infancy, it is difficult to predict what capabilities will be offered in future devices. However, for 
the architecture of Figure B.l, it would be obvious to concentrate on high inter-CLB 
communication bandwidth (i.e., fast internal buses on-chip), as well as support for fast external 
I/O. For example, Xilinx is a leader in this field, and supports segmented routing, which takes 
longer to route cross-chip than within-chip. In contrast, Altera offers more efficient cross-chip 
routing, but penalizes routing within-chip. 

The programming of flat-field FPGAs has fewer associated challenges fcan programming 
hierarchically-structured FPGAs, due to more degrees of freedom in the latter partitioning model. 
For example, a VHLD-to-hardware compiler for hierarchical FPGAs must determine not only 
the arrangement of circuit components (e.g., links between gates in the 2-D gate array) but also 
must perform near-optimal place-and-route in the presence of a third dimension (i.e., level of 
paritioning). As a result, we recommend the use of a flat-field Xilinx FPGA (e.g., Virtex series) 
for a prototype architecture in a possible Phase-II effort. 
B.1.3.1.2.4. Local Memory Size. An additional implementational issue is the size of local 
memory required to store sufficient information for the agreement map partition assigned to Pi. 
Equation (B.7) succinctly describes the memory size |Mi| required to implement retrieval of an 
n-column partition of the agreement map. Additional data to be stored in local memory might 
include an access fi-equency table (e.g., a 2-D histogram having domain coordinates that 
correspond to K greylevels and K pixel positions). This table would record the cumulative 
frequency of access for a given source pixel intensity at a given position, and could be used by 
an intelligent MMU to facilitate more efficient memory access via a prefetch buffer. For 
example, if the buffer stored the 256 most frequent accesses to AM data, then the additional 
space requirement in M would equal 256n bits. For n = IK, (32Mbits overhead) this is not a 
significant additional cost. 
B.1.3.2. Functional Block Timing Analysis. In order to understand the role that each CLB 
plays in the determination of complexity and cost of TNE algorithm implementation, we present 
the following algorithm for processing one column of the agreement map. 
B.1.3.2.1. Algorithm. Let a K^-row by n-column partition of the agreement map be stored in 
memory Mi of processor Pi, where i = 1..P. To retrieve the AM data specific to a given sampling 
block, then process the data and send results back to the host imit, the following execution 
sequence is recommended for the architecture of Figure B.l: 
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Step 1. Submit Block Contents to Processor - Host unit closes all switches on B2 and sends 
retireval codes down Bi to the MMU for M^- Each retireval code consists of a transformation of 
each pixel (x,a(x)), where x is a domain point (pixel coordinates in sampling block) and a(x) 
denotes the pixel value. In practice, fj. • K retrieval codes would be broadcast to all P{. 
Step 1. Retrieve Salient AM Partition - Each processor could pass the incoming retrieval codes 
to the MMU from B2, or the processor could be circimivented via the small intercoimecting bus 
shown in Figure B.l.   The latter alternative is faster, but involves more hardware.   The MMU 
would retrieve the f K • Kn required bits from Mi, which would be sent to Pi. 
Step 3. Compare test vector from sampling block with agreement map.  For example, compute 
the Hamming or Euclidean distance between the test vector and each column of the AM. 
Step 4. Ou^ut comparison results serially from PEs Pi by (a) closing §,3 and ensuring that all 
other switches on B^ are open, then (b) sending the results from Pi down B^, (c) opening Si,3. 
B.1.3.2.2. Analysis. The preceding algorithm can be analyzed by decomposing each step mto its 
components, to which is assigned a time delay. The following notation pertains: 

Table B.l. Symbols for timing analysis ofCLB based processing of a sampling block. 
Symbol  Description  
^t Bsw Opening or closing of switches on bus Bi 

^t BiXM (")       Transmission of an «-bit result along bus Bi 

^t MMPR Processing of one MMU retrieval code 
^t MI/0 (") Retrieve n bits from local memory Mi 

^tpjDs Compute distance between test vector and AM column 

As noted previously, Atpj,s could represent the time required to compute the Hamming or 
Euclidean distance between the test vector and a column of the agreement map. Given the 
preceding notation, an expression of the total processiag time for one sampling block being 
compared with the AM partition retrieved from M and stored on Pi is given by the following 
mathematical model: 

^t =AtB2sw+AtB2XM [Stepl] 
+ K-(At^,^,pR+At^,,/o(n)) [Step 2] 

+ n-Atpa5s [Step 3] (B.IO) 
+ P • (2At33s^ + n ■ At33XM) . [Step 4] 

B.1.3.2.3. Observation. Possible value ranges for variables in the preceding equation include 
those listed in Table B.2, below. To determine the I/O cost, inspection of the second line of 
Equation (B.IO) shows that K ■ (At^j^^p^ + AtMvo(n)) is the dominant term, smce the memory cost 

^tMi/o(") for n = 1 is multiplied by Kn, assuming linearity of I/O cost. 
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B.1.3.2.4. Example. Let At^roCw) = n{lO ns), and n = n = 1024, with At^MPR = 10 ns.   In this 
case, the second line of Equation (B.IO) would have the dominant term 

K(n + 1)(10 ns) = 2.624x10-^ sec 
per source pixel. Note that this is not a ftmction of the type of processor employed (e.g., DSP, 
embedded parallel processor, or FPGA), but rather an inherent problem in the movement of large 
amounts of data across local memory buses. In contrast, if n-fold parallelism is available on each 
processor (e.g., n counters running concurrently to compute Ai applied to each AM partition's 
colvimn), then the computational cost represented by line 3 of Equation (B.IO) would be given by 

1.02 X lO'"* sec < n • Atp^jg < 2.05 x 10'^ sec, 
which is 1/128 to 1/26 of the I/O cost estimated above. Thus, in a realistic model of computation 
the I/O cost predominates, which validates the discussion of Section B. 1.2. 

Table B.2. Example value ranges for analysis ofCLB based TNE processing. 
Symbol Conservative Estimates of Model Parameter Values 
Atgs^ Ins to 10 ns 

^^BiXM («) 1 ns/bit to 10 ns/bit (100 Mbps to 1 Gbps) 

^^MMPR 5 ns to 15 ns (fast cache code-to-address translation) 

^^Mi/o (") 10 ns to 50 ns per access (primary memory assumed) 

Atp^s 20 ^is to 100 us (lOMHz to 50MHz counter BW) 

K 64 to 1024 pixels per sampluig block 
n ~lKbits, to be computed from Equation (B.9) 
P 2 to 16 processors 

B.1.3.3. Processor Timing Analysis. In any realistic analysis of computational cost, processor 
timing, and system performance, one must estimate the computational delay incurred by the 

processor itself In the precedmg model, this delay is represented by the variable Atpj^s. 

Assume that the counter-based model of Dn computation forms fie basis for our original 
formulation of the architectural design shown in Figure B.l. Furdier assume that there are K 
pipelines per processor Pi, each of which implement the previously-discussed counter process. 
We initially make this assumption to show that computation of TN&based pattern matching 
could be with K-fold parallelism. The following three observation-example pairs show that this 
assumption is untenable in practice for the worst case, where the sampling block and AM are 
fiilly processed. However, as shown in Sections B. 1.3.3.7-8, it is possible, with partial or ftdl 
pipelining of AM data through the counter, to process n/p columns of the AM at K pixel shifts of 
each input sampling block. This holds especially well for fct < 1. 

B.1.3.3.1. Observation. We begin this analysis of processor complexity by noting that, if the 
topologically longest path through the m-bit counter consists of Npg gates, then the delay in non- 
pipelined processing of each AM column would be computed as 

Atp^s=KNp^-At„„,„ (B.ll) 

where the variable At,,„^^ denotes one clock cycle delay in Pi. 

B.1.3.3.2. Example. If an FPGA is employed with lOOMHz clock, then At,,„,^ = 10 ns, which 
implies that, for a counter with longest path of 32 gates (Npg = 32) and a K = 256 element 
sampling block, then Atp^^g =256(32)10ns « 8.2x10' sec, or 82 ^s. This implies that the 
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temporal delay component of Equation (B.IO), given by n •Atp,ps, equals approximately 84ms 
for a 1024-column AM partition computed on Pj. 

For a frame rate of F = Ifps, this would mean that, given worst-case constraints fc = 1 and t 
= 1 with image resolution of N = 1024^ pixels, then |j = 1.14 x 10'^, or 0.00114 percent of source 
pixels are interrogated. This statement can be verified by observing that 

1024^ pixels/fra me • 84 msec/pixel • 1 frame/sec 

Note that, if ft; = 0.5 and 1 = 0.1, as discussed previously, $j would still equal 2.28 x 10"^, which 
means that only 240 source pixels would be interrogated by TNE/ATR m the preceding case, 
which we implicitly assume (for purposes of this analysis) to be the best case. However, this 
assessment may vary in practice. 
B.1.3.3.3, Observation. The preceding values for i^ are both infeasibly low, and derive from a 
value of Atpa)s that has been set artificially high due to the unrealistic assumption of non- 
pipelined execution. Since we are assuming that the FPGA or RC processor Pi is a clocked 
(synchronous) circuit, it is not unreasonable to assume that, in the absence of set-up time, an Npg- 
gate processor path could be cleared in Is^jg clock cycles, filled in l^g cycles with partially 
processed results, and require K cycles for execution of the counter process, thereby yieldmg a 
total time delay that can be expressed in terms of partially pipelined execution in terms of an 
execution time 

^tpL=(K + 2Np,)-^W.- (B.12) 
This represents a speedup of 

,    _?tp..s_    K-N^,-?t,„,, K-N^^ K 

■"     ?C^^     (K + 2N,J.?t,,,,     K + 2N,,     K/N,, + 2~''-' ^^'''^ 
where the approximation is valid for Npg » 2. 
B.1.3.3.4. Example. If K = 256, Npg = 32, and At,,„,^ = 10 ns, then 

^*PL =(K + 2Np,)-At„„,,=(64 + 256)10ns =3.2^15, 

which implies that n • Atp,.Ds ~ 3.3 ms for a 1024-column AM partition computed on Pi. 
FoUowmg Example B.1.3.3.2, given fici = 1 and N = 1024^ pixels, this implies 

fj, « 2.89x10"^ or 0.029 percent of source pixels are interrogated. If fe = 0.5 and £ = 0.1, then 

fj, ~ 5.78xlO~^ or 0.578 percent of source pixels are interrogated by the TNE ATR algorithm. 
In a 1024^-pixel image, this equates to 6,061 candidate target pixels. 
B.1.3.3.5. Observation. The preceding situation can be further improved by not clearing the 
pipeline at the arrival of each AM column corresponding to an input pixel, except to remove 
possible spurious bits before the first sequence of K bits (the first column of each agreement map 
partition) is processed. This implies that fiiU pipelined processing of a K-row by N-column AM 
partition would require time 

'T- ="-^tL =(Kn + 2Np,)-At,,„,, cycles, (B.14) 

which represents a savings of (n - 2) • Np^ cycles, but a speedup that remains as 

?   _n-?tp,os_   Kn-Np^-?t„„,,    ^Kn-N^^^       Rn 

■*        T^        lKn + 2NpJ.?t,„,,     Kn+2Np3    Kn/^^^+l" ""'^ ^^'^^^ 

83 



STTR Army02-T004  Topic Title: Analysis and Characterization of Pattern Classifier^ 
GASP ■ Generator for Adaptive Statistical Pattern Recognition Systems     January 31, 2003 

as in Observation B. 1.3.3.3.   However, the reliability of this circuit could be compromised by 
lack of clearing the counter prior to processing of each colimin corresponding to an input pixel. 
B.1.3.3.6. Example. Selecting again the values K = 256, Npg= 32, and At^,„^^ = 10 ns, we obtain 
the following result for fct = 1: 

T* =(Kn+2NJ-At„„,, = (256(1024) + 64)10ns = 2.63 ms, 

which represents a 25.5 percent speed increase over the value of n ■ Af^    « 3.3 ms computed in 

Examples. 1.3.3.4. 
Similar to Exampled B.1.3.3.2 and B.1.3.3.4, this implies that fj^ =3.62x10"^or 0.036 

percent of source pixels are interro^ted. If fe = 0.5 and i = 0.1, then fj^ ~ 7.2x10"% or 0.72 
percent of source pixels are interrogated. In a 1024^-pixel image, this means that 7,549 pixels 
would be interrogated as candidate targets. This equates to approximately one target of size 
128x64 pixels, seven targets of size 32x32 pixels, or 29 16x16-pixel targets, which are realistic 
expectations for small-target imagery. 
B.1.3.3.7. Observation. The numbers of targets discussed at the conclusion of the preceding 
example are sufficient, but are barely adequate for fields that contain a large number of targets 
(e.g., terrestrial surfaces containing broadcasted anti-personnel mines). The reason for this small 
number of targets (and large value of the product n • Atp^^s) is that we have assumed (at the 
outset of this subsection) that there are but K counter pipelines available per processor (e.g., the 
case of a fast serial DSP). If an mbit counter requires fewer than 6m gates (as in the case 
discussed in Section B. 1.2.4), and incurs a longest-path delay of 'Npg < 3m gates, then this 
implies that, for m = 8, fewer than 50 gates per counter would be utilized, for a total of fewer 
than 12,800 gates if K = 256. By inspection of Equation (B.4), it is possible to implement many 
more than K such counters in a 100,000-gate FPGA. Hence, it is reasonable to consider the 
presence ofp » K pipelines on-chip. 

In order to address the case of parallel (and, possibly, reconfigurable) processors Pi we 
modify that assumption to assixme the mplementation of Hp » K pipelines per processor, 
which describes the case of fine-grained parallelism (as opposed to the term P used to designate 
degree of coarse-granular parallelism expressed as the number of processors). In this case, the 
time estimates in Equations (B.ll, B.12, B.14) can be scaled quasilinearly with parallelism per 
pixel shift p = Ncp/K pipelines available per pixel shift, to provide a cost estimate for processing 
K pixel shifts of a given sampling block as 

•Npg-At„„,„ (B.ll') n-Atp,.Ds=n. 

n-AfP    = 
PJDS 

•(K + 2NpJ-At„„,, (B.12') 

T*   =(K 
n 

+ 2Np^)-AU,k, (B.14') 

The following example calculates execution time for the preceding expressions. 
B.1.3.3.8. Example.   Let Nq, = 2048 pipelines per processor, and assume (for purposes of 
simplicity) that the requisite I/O bandwidth is available to circumvent on-chip I/O bottlenecks. 
As before, let K = 256, n = 1024, Npg = 32. and  At,,^,^ = 10 ns, which implies that 
p='N^/K = 2048/356 = 8. The following results pertain: 
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n ■ Atp,.Ds = 1024 32 ■ 10 ns = 10.5 ms 
8 

n-AfP    = ^^ • (256+ 64)-10 iis= 0.409 ms 
PiDS 8 

T*  =(256-^^ + 64)-10118= 0.328 ms. 

In the latter case, the speedup equals 2.63ms/0.328ms = 8, which is exactly p. Hence, it is 
possible to remedy the problems of low speed without resorting to source block subsampling 
(i.e., setting fc^ < 1). The resulting speedup due to hierarchical partitioning of the AM column 
coordinate, which we have shown could approximate 4, = 0.1, would further increase the 
efficiency of processing. 
B.1.3.3.9. Remark. In order to further increase system throughput in terms of number of source 
pixels interrogated, we foresee the employment of three potential technologies, which are: 

1. Faster FPGA or RC clock speed - For example, Xilinx is developing a 5 miUion gate FPGA 
with estimated clock speed of 1 GHz. If current technology trends in FPGA development mirror 
the speed increases realized thus far in SISD CPU development, then one can expect FPGA 
clock rates in excess of 3 GHz within the next three years. In that case, the values of fj (and, 
concomitantly, the values of n -Atp^Dg) would be increased (decreased) by a factor of over 1.5 
orders of magnitude in comparison with values derived in Example B. 1.3.3.6. This would 
potentially improve target acquisition capabilities under the preceding assumptions to over 2,000 
16x16-pixel targets, or more than 170 32x32-pixel targets. Alternatively, in could be increased 
for greater statistical coverage, and different partitioning schemes that might employ higher 
resolution in the template domain (e.g., t more closely approachmg unity) could be employed. 

2. Higher degrees of on-chip parallelism - Given an increasing number of gates m FPGA 
designs (e.g., 20 million-gate FPGAs are expected in commercial quantity withm five years), 
more pipelines could be replicated on-chip, thus facilitating increased parallelism in AM column 
input. This would decrease the degree of interleaving or replication of the delay n-Atp-pg 
required for ATR under the prespecified constraints of Ifps and IKxlK-pixel imagery, making 
n-fold parallelism on-chip a reality, subject to the constraints of the von Neumann bottleneck 
between Pi and Mi. 

3. Increased I/O parallelism through optical backplane interconnects - Although not a likely 
development in FPGA technology in the proposed Phase-II project period, it is reasonable to 
assume that current experiments that attempt to increase broadcast scope and speed in closely- 
coupled parallel processors could be eventually migrated to FPGAs, but on a very small scale. 
Chief among the technologies for large-scale instruction and data broadcast in electro-optical 
backplanes is multi-way communication facilitated by such innovations as wavelength-division 
multiplexing, spread-spectrum encoding, and highly miniaturized array detectors. 
B.1.4. Algorithmic and Implementational Issues. In addition to the cursory analysis presented 
in the preceding sections, we discuss two technical issues of interest to the sponsor (FTI). 
Initially, we present a brief comparison of computational cost for different pattern matching 
approaches that appear to be significant to the proposed Phase-II effort. 

The Hamming-like method of pattern matching discussed in Section B.1.2 is neither the only 
nor the optimal method for matching sampling block contents to a template database. For 
example, the Euclidean distance between two Boolean feature vectors can be computed from Z>H. 
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It is interesting to note that, in the case of comparing Boolean vectors, the Hamming and 
Euclidean distances can both be computed via the XOR operation. 

For example, given two Boolean vectors a = (a,,a2,...,aK) and  b = (b,,b2,...,bK), the 
Hamming distance can be expressed as: 

while the Euclidean distance 

D, = ^i(ai -hj= 7X(a ^^^ b) =^ 
can be computed from the Hamming distance external to Pi (e.g., in the FPGA host). A similar 
comment holds for the RMS distance 

As a result, the summation of XOR results constituent to the Euclidean and Hamming 
distances would require the same computational cost in the architecture of Figure B.l, regardless 
of which of these two distances was being computed. 

It is important to note that the preceding concept is relevant for Boolean vectors only. For 
real-valued vectors a and b, the Hamming distance is undefined unless a thresholding operation 
or other type of comparison operation is introduced, which would yield a Boolean result. 

Additionally, we note that matching of real-valued vectors on-chip would require integer or 
floating-point addition and multiplication at the very least, both of which are space-consumptive 
and tend to result in unfeasibly slow circuits for current FPGA implementations. For example, 
given a pattern class p and its covariance matrix C, together with a meanhpattem m comprised of 
K elements, the Mahalanobis distance between a K-element test vector a and m would be 
computed as 

£>M=(a-m)'C(a-m) , 
which implies multiplication of a IxK-element vector with a KxK-element matrix to yield a 
IxK-element vector that is then multiplied by a BCxl-element vector to yield a scalar.   This 
requkes 0(K^) multiplications, which should be floating point operations if p is large (to achieve 
sufficient discrimination between patterns represented in C and m. 

In a Phase-II study, we propose to model FPGA-based architecture performance in terms of 
I/O bus bandwidth and collision effects associated with realistic packet size (e.g., several 
columns of a TNE agreement map per packet). Additionally, we propose to model the effect of 
packet transmission errors and retransmissions on architecture performance, as well as MNN- 
directed TNE classification accuracy. 

In the former case (performance), bus collisions can significantly reduce external I/O bus 
bandwidth, creating an I/O bottleneck that effectively reduces CPU utilization, thereby 
penalizing processor performance. In the latter case (classification accuracy), if information 
from TNE's binary pointer table contained in the agreement map is corrupted when transmitted 
over external or internal databus(es), then the AM would no longer contain correct partial 
classification results. Whether or not MNNs have sufficient noise tolerance to maintain 
classification accuracy (and, therefore, Pd and Rfa) in an MNN-directed TNE paradigm with 
significant bus errors is unknown. Additional research is therefore indicated in performance 
simulation for TNE architectures, as well as the incorporation of fault models and fault isolation 
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procedures in reconfigurable processors with different types of external buses (e.g., PCI-bus 
versus Myrinet). 

B.2. ATR Performance Metrics for MNN-Directed TNE 
In previous research, the authors have employed several measures of Pd and Rfa, which are 

(a) computed componentwise, (b) area-based, or (c) pixel-based. The componentwise Pd is 
computed as follows: 
Step 1. Apply an ATR filter such as the ADGF to a test image, then threshold or otherwise 
filter the result to obtain pixels deemed significant, which comprise an image b. Morphological 
filtering can be used in this step, to reduce the number of noise components whose size is well 
outside the range of expected target size. 
Step 2. Sequentially label the connected components in b to produce an image c e Z^^ 
(not to be confused with a compressed image c discussed in Section 2). Given a truthing image f 
€ {0,1}^, which denotes target position and extent by unitary values, compute the fraction of 
pixels that are correct detections as 

F  -XM ^d-^*J^, (B.16) 
and the fraction of pixels on target in f that are false alarms in b, as follows: 

where f denotes the complement of f. 
Step 3. Assume that we have a ftinction/c : {0,1 j'^ -^ N that counts the number of 
connected components in a Boolean image on X. For example, in Step 2, n =/c(b). Compute 
the probability of detection Pa from the number of components M = /c(f) and the number of 
components Na that have common pixels in b and f, as 

Pd = wax(l,Nd/Nt). 
The upper limit of Pd is clamped to the unitary value, since Pd is a probability and there can be 
more than one target component in b per target component in f. One similarly computes the 
number of false alarms as the number of components Nf that have one or more pkels located in b 
but have no pixels at the corresponding location(s) in f. We can express this in terms of image 
algebra, as follows: 

Nf=/,(b-f). 
Observe that the number of detected components (e.g., N, Nf) will depend on the detection 
technique, in particular, upon the postprocessing operations that are applied to the output of the 
ADGF. In practice, we apply morphological filters to the thresholded ADGF output, to reduce 
the incidence of spurious noise. 

One of the problems associated with componentwise Pd and Rfa metrics is computational 
cost - given an N-pixel image, connected component labeling can require as many as 0(N^) 
operations for serpentine components. As a result, we prefer to approximate Pj and Nf by Fd and 
Ffa, which can be computed on parallel processors, as shown in the vector-parallel formulation of 
Equation (B.16) and (B.17). In preliminary tests, we have found that Fd and Ffa approximate Pd 
and Nf (in the latter case, with some manipulation) to within 10 to 15 percent error in imagery of 
natural scenes with sparse convex targets. 
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In a Phase-II study, we propose to analyze ROC curves constructed from Fa and Ffa, to 
determine their correspondence with ROC curves constructed from Pd and Rfa (derived from Nf). 
We also plan to show that Fa and Ffa are much more feasible computationally for real-time 
detection of performance deficits in support of dynamically adaptive MNN-directed TNE. 
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